
2

Gram-Schmidt Orthogonalization

One very useful characteristic of Hermitian operators is that the non-

degenerate eigenfunctions (that is, eigenfunctions that don’t share an

eigenvalue with other eigenfunctions) of a Hermitian operator are guar-

anteed to be orthogonal to one another. And as mentioned in Section

2.3 of A Student’s Guide to the Schrödinger Equation, even in the case

of degenerate eigenfunctions (which share eigenvalues with other eigen-

functions and may not be orthogonal), those eigenfunctions can be used

to construct a set of orthogonal eigenfunctions.

This document describes one approach for doing that construction: the

Gram-Schmidt orthogonalization procedure. Using this procedure, you’ll

be able to construct a set of orthogonal vectors or functions from a set of

non-orthogonal vectors or functions. After that description, you’ll find

a list of references with more details of the Gram-Schmidt procedure

applied to both vectors and functions. The concept of Gram-Schmidt

orthogonalization is straightforward, involving the projection of one of

the vectors onto another (to find out how much of that vector “lies

along” the other) and then subtracting that projection from the original

vector, leaving on the part that doesn’t “lie along” the original vector.

So in the case of two vectors such as ~A and ~B, start by projecting

vector ~B onto vector ~A (you could equally well project vector ~A onto

vector ~B) and then turn that (scalar) projection into a vector in the

direction of vector ~A. So now you’ve got a vector in the direction of ~A but

with magnitude equal to the “amount” of vector ~B along the direction of

vector ~A. So if you then subtract that new vector from vector ~B, you’ll

be left with the part of ~B that doesn’t lie at all along the direction of
~A. In other words, you’ll have made a vector that’s perpendicular to ~A,

2 Gram-Schmidt Orthogonalization

which is exactly what you were trying to do. So vector ~A hasn’t changed,

and you’ve turned vector ~B into a vector that’s perpendicular to ~A.

Here’s how the process looks in equations for two vectors ~A and ~B:

~Anew = ~Aorig

~Bnew = ~Borig − part of ~Borig lying along ~Anew = ~Borig −
~Borig ◦ ~Anew

~Anew ◦ ~Anew

~Anew.

If you want to make your new set of vectors orthonormal (that is, not

only orthogonal but also with unit magnitude), just divide each of them

by its magnitude.

You may be thinking,“Ok, but what if I have a set of non-orthogonal

three-dimensional vectors, or ten-dimensional abstract vectors, or con-

tinuous functions?” Happily, the Gram-Schmidt procedure works for

those cases as well, since you can just keep using the same trick (pro-

jecting and subtracting off). For example, if you have three potentially

non-orthogonal vectors ~A, ~B, and ~C in a three-dimensional vector space,

use the procedure described above to find the part of ~B that’s perpen-

dicular to ~A, and then find the part of ~C that’s perpendicular to both
~A and ~B (by projecting ~C onto both ~A and ~B and then subtracting off

those parts of ~C).

Consider the following three vectors expressed in the three-dimensional

Cartesian coordinate system:

~Aorig =

Ax

Ay

Ay

 ~Borig =

Bx

By

By

 ~Corig =

Cx

Cy

Cz

 .

Using the Gram-Schmidt procedure to find three orthogonal vectors

(~Anew, ~Bnew, and ~Cnew) based on these three vectors looks like this:

~Anew = ~Aorig =

Ax

Ay

Ay


~Bnew = ~Borig − part of ~Borig lying along ~Anew = ~Borig −

~Borig ◦ ~Anew

~Anew ◦ ~Anew

~Anew

~Cnew = ~Corig − part of ~Corig lying along ~Anew − part of ~Corig lying along ~Bnew

= ~Corig −
~Corig ◦ ~Anew

~Anew ◦ ~Anew

~Anew −
~Corig ◦ ~Bnew

~Bnew ◦ ~Bnew

~Bnew

Gram-Schmidt Orthogonalization 3

in which the open circles represent the dot product.

To see this procedure in action, consider the following three-dimensional

vectors expressed in the Cartesian coordinate system:

~A = 3̂i − 2ĵ + 4k̂ ~B = ĵ − 2k̂ ~C = 2̂i + 3ĵ − k̂.

Writing these vectors as column vectors makes them

~Aorig =

 3

−2

4

 ~Borig =

 0

1

−2

 ~Corig =

 2

3

−1


and the Gram-Schmidt equations give

~Anew = ~Aorig =

 3

−2

4



~Bnew = ~Borig −
~Borig ◦ ~Anew

~Anew ◦ ~Anew

~Anew =

 0

1

−2

−
 0

1

−2

 ◦
 3

−2

4


 3

−2

4

 ◦
 3

−2

4


 3

−2

4



=

 0

1

−2

−
(
0 1 −2

) 3

−2

4


(
3 −2 4

) 3

−2

4


 3

−2

4

 =

 0

1

−2

− −10

29

 3

−2

4

 =

 0

1

−2

+
1

29

 30

−20

40



=
1

29

 30

9

−18



4 Gram-Schmidt Orthogonalization

~Cnew = ~Corig −
~Corig ◦ ~Anew

~Anew ◦ ~Anew

~Anew −
~Corig ◦ ~Bnew

~Bnew ◦ ~Bnew

~Bnew

=

 2

3

−1

−
 2

3

−1

 ◦
 3

−2

4


 3

−2

4

 ◦
 3

−2

4


 3

−2

4

−
 2

3

−1

 ◦ 1
29

 30

9

−18


1
29

 30

9

−18

 ◦ 1
29

 30

9

−18


1

29

 30

9

−18



=

 2

3

−1

−
(
2 3 −1

) 3

−2

4


(
3 −2 4

) 3

−2

4


 3

−2

4

−
(
2 3 −1

)
1
29

 30

9

−18


1
29

(
30 9 −18

)
1
29

 30

9

−18


1

29

 30

9

−18



=

 2

3

−1

− −4

29

 3

−2

4

− 105
29
45
29

1

29

 30

9

−18

 =

 2

3

−1

+
1

29

12

−8

16

+
1

29

−70

−21

42


=

 2

3

−1

+
1

29

−58

−29

58

 =

0

2

1

 .

Thus

~Anew =

 3

−2

4

 ~Bnew =
1

29

 30

9

−18

 ~Cnew =

0

2

1


and you can verify that these three vectors are orthogonal by taking the

dot products between pairs:

~Anew◦ ~Bnew =

 3

−2

4

◦ 1

29

 30

9

−18

 =
(
3 −2 4

) 1

29

 30

9

−18

 =
1

29
[(3)(30)+(−2)(9)+(4)(−18)] = 0

~Anew◦~Cnew =

 3

−2

4

◦
0

2

1

 =
(
3 −2 4

)0

2

1

 = [(3)(0)+(−2)(2)+(4)(1)] = 0

Gram-Schmidt Orthogonalization 5

~Bnew◦~Cnew =
1

29

 30

9

−18

◦
0

2

1

 =
1

29

(
30 9 −18

)0

2

1

 =
1

29
[(30)(0)+(9)(2)+(−18)(1)] = 0.

The same procedure works for continuous functions. So given two func-

tions such as f(x) and g(x), the Gram-Schmidt procedure can be used

to construct two orthogonal functions (fnew(x) and gnew(x):

fnew(x) = forig(x)

gnew(x) = gorig(x)− gorig(x) ◦ fnew(x)

fnew(x) ◦ fnew(x)
fnew(x)

in which the inner product for continuous functions is

g(x) ◦ f(x) =

∫ ∞
−∞

g∗(x)f(x)dx.

As an example, consider f(x) = x and g(x) = x3 over interval of x = −2

to x = 2:

fnew(x) = forig(x) = x

gnew(x) = gorig(x)− gorig(x) ◦ fnew(x)

fnew(x) ◦ fnew(x)
fnew(x) = gorig(x) −

∫∞
−∞ g∗orig(x)fnew(x)dx∫∞
−∞ f∗new(x)fnew(x)dx

fnew(x).

So

gnew(x) = x3 −
∫ 2

−2 (x
3
)(x)dx∫ 2

−2(x)(x)dx
x = x3 −

∫ 2

−2 x
4dx∫ 2

−2 x
2dx

x

= x3 −
1
5x

5|2−2
1
3x

3|2−2
x = x3 −

1
5 [25 − (−2)5]
1
3 [23 − (−2)3]

x = x3 −
64
5
16
3

x

= x3 − 12

5
x.

Thus fnew(x) = x and gnew(x) = x3 − 12
5 x.

To verify that fnew(x) and gnew(x) are orthogonal on the interval

x = −2 to x = 2, check that the inner product between these two

functions is zero:

6 Gram-Schmidt Orthogonalization

gnew(x) ◦ fnew(x) =

∫ 2

−2

(
x3 − 12

5
x

)∗
(x)dx =

∫ 2

−2

(
x4 − 12

5
x2

)
dx

=
1

5
x5|2−2 −

(
12

5

)
1

3
x3|2−2 =

64

5
−
(

12

5

)
16

3
= 0

as expected.

References

Weisstein, Eric W. “Gram-Schmidt Orthonormalization.” From MathWorld–

A Wolfram Web Resource. http://mathworld.wolfram.com/Gram-SchmidtOrthonormalization.html

HMC Online Tutorial “The Gram-Schmidt Algorithm.” From Harvey

Mudd College Mathematics. https://www.math.hmc.edu/calculus/tutorials/gramschmidt/

