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Chapter 1

Laplace Transform
Solutions

Problem 1

Make phasor diagrams to show how the counter-rotating phasors
et and e~™* can be combined to produce the functions cos (wt) and
sin (wt) as given by Egs. 1.5 and 1.6.



Hint 1: The Euler relation for relating the cosine function to phasors
(Eq. 1.5) says that cos (wt) is equal to one-half of the sum of ™' and
e~™! This can be shown graphically by sketching these two phasors
and their sum in the complex plane at various times.



Hint 2: Start by sketching e™! and e~ as well as their sum at
time t = 0. Remember that wt is the angle that e makes with the
positive real axis measured counter-clockwise and —wt is the angle
that e=™! makes with the positive real axis measured clockwise.



Hint 3: At time ¢t = 0, both of your phasors should point in the
direction of the positive real axis. In this figure, both phasors e®*

Imaginary
Axis
t=0 -
Q)tz 0 o ot elmt+e-lmt =2
S Y/; Real
Tt ’e—iwt Axis

and e ™! (represented by dashed arrows) have been offset slightly
from the real axis to make them visible. Note that the length of the

sum of these two phasors is 2, so half the length of the sum is 1.



Hint 4: Pick another time, such as ¢t = Ty/8, in which Tj represents
the time period of one complete cycle (so w = 27/Tp). That means

" 2m To ™
wt={(—1)(—=—|=-.

T 8 4
and the plot of €™ and ¢! along with their sum at time t = Tp/8
should look like the following plot. Note that the length of half the

sum of these two phasors is approximately 0.7.
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Hint 5: Picking a third time such as t = Ty/4 gives the diagram
shown below and in this case the sum of the two phasors has zero
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length.



Hint 6: Now plot the values of the three points you've determined.
This plot should begin to reveal the shape of the cosine function, as
shown on the left side of the following figure. Doing the same process
for additional points over the range of ¢ from 0 to one complete cycle
(To) gives the plot shown on the right side of the figure below.
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Hint 7: For the sine function, the Euler relation (Eq. 1.6) says that
sin (wt) is equal the difference of ™' and e~ divided by 2i. This
can be demonstrated graphically using the same approach as that
described in the previous hints for the cosine function.

But in this case, note that the difference between ™! and e~™!
is the same as sum of e and —e ™!, So use the sum of these two
phasors for the sine function (and don’t forget to divide by 2i after
finding the length of the phasors’ sum. You can see the details of
this in the Full Solution for this problem.



Full Solution:

The Euler relation for relating the cosine function to phasors
(Eq. 1.5) says that cos (wt) is equal to one-half of the sum of e™*
and e~™!. This can be shown graphically by sketching these two
phasors and their sum in the complex plane at various times.

To do that, start by sketching ¢! and e~™* as well as their sum
at time ¢ = 0. Since wt is the angle that ¢** makes with the positive
real axis measured counter-clockwise and —wt is the angle that e ™!
makes with the positive real axis measured clockwise, both of these
phasors point in the direction of the positive real axis. In this figure,

Imaginary
Axis
t=0 o
Cot: 0 ° ot el(ut+ef|wt =2
- E V/: Real
T T ’e*io)t Axis
both phasors €™ and e~** (represented by dashed arrows) have been

offset slightly from the real axis to make them visible. Note that the
length of the sum of these two phasors is 2, so half the length of the
sum is 1.

Now pick another time, such as t = T /8, in which Tj represents



the time period of one complete cycle (so w = 27/Tp). That means

(@) (5)-3

Hence the plot of ¢! and e~** along with their sum at time t = T;/8
looks like this
Imaginary
Axis
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“

and the length of half the sum of these two phasors is approximately
0.7.



Picking a third time such as ¢t = Ty /4 gives the diagram shown
below and in this case the sum of the two phasors has zero length.
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Plotting these three points begins to reveal the shape of the cosine
function, as shown on the left side of the following figure, and doing
the same process for additional points over the range of ¢ from 0 to
one complete cycle (Tp) gives the plot shown on the right side of the
figure below. This demonstrates that one-half of the sum of ** and
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e~ is equal to cos (wt).



For the sine function, the Euler relation (Eq. 1.6) says that
sin (wt) is equal the difference of ™' and e~ divided by 2i. This
can be demonstrated graphically using the same approach as that
shown above for the cosine function.

In this case, note that the difference between ™! and e~** is the

same as sum of e’ and —e ™! So start by sketching this sum at
time ¢ = 0:
Imaginary
Axis
t:(_) eiwt_l_(_efiwt) = 0
(Dt=0° —griot / iot
4e ....... i Real




At time ¢ = T, /8 the plot looks like this: Note that in this case the
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result of combining the two phasors lies along the imaginary axis, so
dividing by 2:i gives a real value of approximately 0.7.



At time t = Ty/4, the plot of the two phasors and their combi-

nation is and dividing by 2¢ gives the real value of 1.0

Imaginary
Axis
L e+ (-e®)=2i
_e*imt eimt
t=T,/4 Als
ot=90" L
e Real
Axis




Plotting these three points begins to reveal the shape of the sine
function, as shown on the left side of the following figure, and doing
the same process for additional points over the range of ¢ from 0 to
one complete cycle (Tj) gives the plot shown on the right side of this
figure:

This demonstrates that the difference between e™! and e ™!

(that is, the sum of ¢! and —e~™") divided by 2i is equal to sin (wt).



Problem 2

Use the definition of the Fourier transform (Eq. 1.7) and the sifting
property (Eq. 1.13) of the Dirac delta function §(¢) to find the fre-
quency spectrum F'(w) of 6(t).



Hint 1: The Fourier transform of the time-domain function f(t) is
given by Eq. 1.7 as

F(w) = /_00 f(t)e “tdt.



Hint 2: Insert the Dirac delta function 6(¢) into this equation for
f(t), which gives

Flw) = /_ (et



Hint 3: Use the sifting property of the delta function, which allows
you to pull the function e=*? out of the integral while inserting the
value of t at which the delta function has non-zero value.



Hint 4: Since the delta function §(¢) has non-zero value at time ¢t = 0,
the frequency spectrum is

F(w) = / S(t)e ™dt = ™0 = 1.
which means that the frequency spectrum of an infinitely narrow

impulse §(¢) contains all frequencies, and the amplitude of each fre-
quency component is 1.



Full Solution:

The Fourier transform of the time-domain function f(t) is given
by Eq. 1.7 as

Flw) = /_ T et

Inserting the Dirac delta function §(¢) into this equation for f(t)
gives

F(w) = /_00 §(t)e “'dt.

o

This integral can be evaluated by using the sifting property of the
delta function, which allows you to pull the function e=** out of the
integral while inserting the value of ¢ at which the delta function has
non-zero value, which is ¢ = 0 in this case:

Fw) = / S(t)e “idt = 70 = 1.

—00

Hence the frequency spectrum of an infinitely narrow impulse ()
contains all frequencies, and the amplitude of each frequency com-
ponent is 1.



Problem 3

Find the frequency spectrum F'(w) of the constant time-domain func-
tion f(¢) = ¢. Then find and sketch F'(w) for the time-limited func-
tion f(t) = ¢ between t = —ty and ¢t = +t, and zero elsewhere.



Hint 1: For f(t) = c over all time, the Fourier transform (Eq. 1.7)
is

Flw) = /_ Z Ft)etdt /_ Z ce—tdt.



Hint 2: Move the constant ¢ outside the integral:

Fw) = c/ et

o0



Hint 3: Note that this integral appears in Eq. 1.10 for the Dirac

delta function: -
/ e “tdt = 2r8(t).

o0



Hint 4: Using the expression from the previous hint makes F'(w)

F(w) = c/_Oo e “tdt = c(27m)d(t).

o0



Hint 5: For f(t) = ¢ between time t = —t, and t = +t(, the Fourier

transform is
to ) to )
F(w) = / ce hdt = c/ e “rtdt
—to —to



Hint 6: Evaluate the integral

o —iwt 1 —iwt |to
Flw)=c e™dt=c|— e | .
_to _Zw —to

and insert the limits



Hint 7: Now use the Euler relation for the sine function
[t — e7™"0] = 2isin (wio)
which gives
F(w) = i— [—2isin (wtp)]
o [sin (wto)} |

W

€la

You can see a sketch of this function in the Full Solution for this
problem.



Full Solution:
For f(t) = c over all time, the Fourier transform (Eq. 1.7) is

F(w) = / Z f(t)e “tdt = / Z ce”™tdt.

Moving the constant c outside the integral makes this

F(w) = c/ et

o0

Note that this integral appears in Eq. 1.10 for the Dirac delta func-

tion: -
/ e “tdt = 218 (t).

So F(w) is
F(w) = c/_ e “tdt = c(27m)d(t).

For f(t) = ¢ between time ¢ = —t; and t = +%(, the Fourier trans-

form is . .
F(w) = / ce “tdt = c/ et
—to —to

noindent and evaluating this integral gives

o 1 -
F(w) = c/ e Wit = ¢ (— ) e””t| Ot .
_to _Zw —to



Inserting the limits gives

— ;= [,—iwto _ —iw(—to)
F(w) zw[e C—e o].

Now use the Euler relation for the sine function
[t — e7™"0] = 2isin (wip)
which gives
F(w) = i— [—2isin (wtp)]
9 {M} |

w

€la

This expression can be put into the form of sin (az)/az (the “sinc”
function) by multiplying by to/to:

Pla) = 2010 |02,

wto



A sketch of this function with ¢ = 1 and t;, = 5 sec over an
angular frequency range from w = —m rad/sec to w = 7 rad/sec is
shown below:




Problem 4

Use the definition of the inverse Fourier transform (Eq. 1.16) to
show that f(t) = cos(wt) is the inverse Fourier transform of F(w)
given by Eq. 1.12 and that f(¢) = sin(wt) is the inverse Fourier
transform of F(w) given by Eq. 1.15.



Hint 1: For cos (wt), use the inverse Fourier transform given by Eq.
1.16:

£ = - /Oo Flw)e“dw.

:% N



Hint 2: Insert the expression for F(w) given by Eq. 1.12 into the
inverse Fourier transform:

f(t) 1 / 7]'6(6&.) + w1>eiwtdw + i 7r<5(w o W1>€iwtdw.

:% 2 J_ o

— 00



Hint 3: Evaluate the first integral using the sifting property of the
delta function:

1 [e.o]

i ™ : 1 .
76(w + w)etdw = — Wit — Zpmiwrt
[ ot !

2



Hint 4: Now evaluate the second integral using the sifting property:

1 o

_ twit 1
2m J_ o

) T .
7o(w — wy)e™tdw = 7€ ot
T

e



Hint 5: Combine the results of the previous hints:

f(t) — (efiwlt 4 eiw1t) )

DN | —



Hint 6: Use Euler’s relation for the cosine function to show that f(t)
is

f(t) = %[2 cos (wt)] = cos (wit).



Hint 7: Use the same approach shown in the previous hints for the
sine function sin (wt), for which the frequency spectrum F(w) given
by Eq. 1.15 is

F(w) =imd(w + wy) — imd(w — wy).



Hint 8: Insert this expression for F'(w) into the inverse Fourier trans-
form and evaluate the integrals using the sifting property of the delta
function as shown above for the cosine case:

1
o7

f(t) / im0 (w + w1 )e“tdw — 2i/ imd(w — wy)e™tdw
T J -

—00

(et — giont)

ft) =

N | .



Hint 9: Now use Euler’s relation for the sine function:

(1) = £ [~2sim (wt)] = sin (wt).



Full Solution:
The inverse Fourier transform is given by Eq. 1.16 as

) = 2 /Oo Flw)e dw

frd % N
and the frequency spectrum F'(w) given by Eq. 1.12 is
F(w) =7md(w+ wy) + mé(w — wy).

Inserting this expression for F'(w) into the inverse Fourier transform
gives

o0

1 [~ ‘ 1 ‘
f(t) / To(w + wy)e dw + — 76 (w — wy)e™“ dw.

" or 2 J_

— 00

The first integral can be evaluated using the sifting property of the
delta function:

1 oo

, T 1 _.
— T (w + wy)e®ldw = —e 1t = gt
or | ( 1) 2

27

and the second integral can also be evaluated using the sifting prop-
erty:

1 [ , T 1

(5 W — zwtd — w1t N

o (w — wy)e™ dw o€ 5

i eiwlt
2r J_



Hence ]
f(t) — 5 (efiwlt 4 eiw1t)

and using Euler’s relation for the cosine function shows that f(t) is
ft) = %[2 cos (wit)] = cos (wt).
For sin (wt), the frequency spectrum F'(w) given by Eq. 1.15 is
F(w) =imd(w + wy) — imd(w — wy).

Inserting this expression for F(w) into the inverse Fourier transform
gives

1 [~ ’ 1 [~ 4
f(t) / imd(w + wy)e™ dw — gy / imd(w — wy)e™ dw
T J -0

:% N

As in the cosine case shown above, these integrals can be evalu-
ated using the sifting property of the delta function, giving and

f(t) — % (e—iwlt o eiwlt) )

So in this case Euler’s relation for the sine function gives

£(t) = %[-21 sin (wnt)] = sin (wi?).



Problem 5

If vector A = 3i — 27 + k and vector B = 6) — 3k, what are the
magnitudes |A| and | B|, and what is the value of the scalar product
Ao B?



Hint 1: The magnitudes of vectors A amd B expressed in three-
dimensional Cartesian coordinates are given by

A = /A2 + A2 + A2

Bl = \/B2+ B2+ B2,




Hint 2: Inserting the values for the vector coefficients gives

A] = /A2 + A2+ A2 = /(3)2 + (-2)2 + (1)2 = V14

and

1Bl = /B2 + B2+ B2 = /(0 + (6)” + (-3) = V5.



Hint 3: For these vectors expressed in three-dimensional Cartesian
coordinates, the dot product is defined as

AoB=A,B,+A,B, + A.B..



Hint 4: Inserting the coefficient values gives

Ao B = (3)(0) + (=2)(6) + (1)(=3) = (0) + (=12) + (=3) = —15.



Full Solution: For vectors A and B defined by
A=3-2)+k

and . X
B =01+ 67 — 3k,

the magnitudes are given by

A = /A2 + A2 + A2

®:¢@+%+@.

Inserting the values for the vector coefficients gives

[A] = \JA2 + A2+ A2 = \/(3)2+ (=2)2 + (1)2 = V14

Bl = \/B2+ B2+ B2 = /(0 + (6) + (=3 = V5,

and

For these vectors expressed in three-dimensional Cartesian coor-
dinates, the dot product is defined as

AoB=A,B,+A,B,+ A.B.
and inserting the coefficient values gives

Ao B =(3)(0)+ (—=2)(6) + (1)(=3) = (0) + (=12) 4 (=3) = —15.



Problem 6

For the vectors A and B defined in the previous problem, use Eq.
1.18 an§ the r_g:sults of the previous problem to find the angle be-
tween A and B.



Hint 1: Note that the cosine of the angle between vectors A and B
appears in the expression for the dot product:

Ao B = |A||B|cos (6).



Hint 2: Solve the equation given in the previous hint for cos (6):

cos (0) = A5




Hint 3: Insert the values for the magnitudes of vectors A and B and
their dot product from the previous problem:

—15

cos (0) = m

= —0.5976



Hint 4: Take the arc cosine to find the angle between these two
vectors:

0 = cos™' (—0.5976) = 126.7°.



Full Solution:
The cosine of the angle between vectors A and B appears in the
expression for the dot product:

Ao B = |A||B]cos (0)
and solving for cos () gives
AoB
os (0) = £o2
Al B

Inserting the values for the magnitudes of vectors A and B and their
dot product from the previous problem gives

cos (0) = —0.5976

—15
- V14V45
and taking the arc cosine gives the angle between these two vectors:

0 = cos™! (—0.5976) = 126.7°.



Problem 7

The Legendre functions of the first kind, also called Legendre poly-
nomials, are a set of orthogonal functions that find application in a
variety of physics and engineering problems. The first four of these
functions are

Py(r) =1 Py(z) == (32° — 1)

N =N =

P(z)==x Pi(z) = = (52° — 3z).

Show that these four functions are orthogonal to one another over
the interval from z = —1 to x = +1.



Hint 1: Use the definition of the inner product between functions
g(x) and f(z) over the range of x = —1 to x = 1:

(9, f) = / g*(z) f(z)dx.

-1



Hint 2: For Py and Py, let g(z) = Py(z) =1 and f(x) = Pi(z) = :

(9, f) _/_Hg(x)*f(:c)dx—/H(l)*xda;.

1 -1



Hint 3: Evaluate the integral:

I = 5102 = (-1 =0,

(9, f) = 1T

1
2
which means that these two functions are orthogonal to one another
over this interval.



Hint 4: Use the same approach for each pair of the Legendre polyno-
mials (you can see the details in the Full Solution for this problem).



Full Solution:
Use the definition of the inner product between functions g(x) and
f(z) over the range of z = —1 to z = 1:

(0, f) = / @) (@)

For Py and Py, let g(x) = Py(x) =1 and f(z) = Pi(z) = z:

<gaf>:/Hg(x)*f(x)dx:/H(l)*xdx.

1 -1

Evaluating the integral gives

(9. £) = 32° 1 = S10? = (=17 =0,

which means that these two functions are orthogonal to one another
over this interval.



For Py and Py, let g(x) = Py(x) = 1 and f(z) = Py(z) = 5 (32% — 1):

1
2

= [ ars@ar= [arg @ -

1

1 +1
= 5/ (32% — 1) d.

1

Evaluating the integral gives

(9. ) = 507 L= 3ol = LI~ (-1 5 ()~ ()] = 1-1 =0,

For Py and Pj, let g(z) = Py(z) = L and f(z) = P3(z) = 5 (52° — 3x):

+1 +1
0.5 = [ oy i@ = [ 0y5 60 - s de

1 -1

1 +1
= 5/ (53:3 — 335) dx.

-1

Evaluating the integral gives

(g, f) = }



For P, and Py, let g(z) = Pi(z) = z and f(z) = Py(z) = 5 (32% — 1):

1
2

{9,f) :/j g(x)*f(a:)dxz/ (:c)*%(?):cQ—l) dx

1 -1

1 +1
= 5/ (3I3 — x) dz.

1
Evaluating the integral gives

g, f) = 3 4‘ 2|+1:3 1

For P, and P;, let g(z) = Pi(z) = z and f(z) = P3(z) = 1 (52° — 3z):

(9, f) =/_+ g(x)*f(x)dxz/ (m)*% (52% — 32) dw

1 -1

1 +1
= 3 / (5x4 — sz) dx.

-1
Evaluating the integral gives

st 1 1 1
9. f) = 52°| \ 5

For P, and Ps, let g(z) = Py(z) = § (322 — 1) and f(z) = P3(z) =



1 (52® — 3x):

)= [ " gty fayde = / " B (3x2—1)r%(5x3—3:ﬂ) &

1 -1

1 [

= Z/ (152° — 142 + 3z) da.
-1

Evaluating the integral gives

<g f> ‘ 16 4‘ xzrrl



Problem 8

Find the Fourier transform F(w) of the modified function f(t)u(t)e="
for f(t) = sin(wqt) following the approach used in Section 1.5 for
the modified cosine function. Compare your result to Eq. 2.17 in
Chapter 2 for the unilateral Laplace transform F'(s) of a sine func-
tion.



Hint 1: Use the Fourier transform defined in Eq. 1.17 as

Flw) = /_ T et



Hint 2: For the modified function f(¢)u(t)e~" with f(¢) = sin (w;t),
the Fourier transform is

F(w) = /_Oo sin (wit)u(t)e e ™' dt

o0

:/ sin (wit)e” gt
0



Hint 3: Use the Euler relation
[eiwlt .

21

—tw1t
sin (wit) = e



Hint 4: The improper integral in the expression

[e e} w1t —iw1t
F(w) = / —[e ] (i) tdt
/ {ef[o'Jrz w—w1)]t [a+i(w+w1)]t}dt'
can be evaluated as

F(w) = lim —/ {e_["“(w wi)] —e_["”(wrm)}t}dt.

T—00 22



Hint 5: Evaluating gives

T

1 -1

6—[a+i(w—w1)}t
T—00 20 |0+ i(w — wy)

0
-1
o+ i(w~+w)

e [o+i(w+wr)]t

J



Hint 6: The exponential factors with upper limit 7 go to zero as
T — 00, and inserting the lower limits of zero gives

Py |— oL
2i |0+ i(w—wy) o+ i(w~+ w)

1 1 1
2 (0t iw) —iwy (04 iw) Fiw |



Hint 7: Normalizing these complex fractions gives

F(w)

1 [(a—iriw)—l—iwl (0 + iw) — iw;

T2 (0t iw)?—w? (0+iw)?+w?

1 2iw;
2 (o4 iw)2 —w? ]|



Hint 8: Use s = 0 + w:



Full Solution: The Fourier transform is defined in Eq. 1.17 as

= / Z f(t)e “tdt

and for the modified function f(¢)u(t)e " with f(¢) = sin (w;t), this

is

Fw) = /OO sin (wit)u(t)e e ™ dt

:/ sin (wyt)e” F@gt,
0

Using the Euler relation
[eiw1t _ e—iw1t]

sin (wqt) = 5
i

makes this
Fl) = / T e
/ {eloHilamanlt _ —loitruley gy
This type of improper integral can be evaluated as

F — lim _/ { —lo+i(w—wr)]t [U+i(w+w1)]t}dt

T—00 Z



and evaluating gives

T

1 -1 .
F(w) = lim — | ————— ¢ loFilw—w)lt
7= 20 [0+ i(w —w) 0
Tl i ] _
o+ i(w+ w) 0

The exponential factors with upper limit 7 go to zero as 7 — o0,
and inserting the lower limits of zero gives

Py m|— 1t oL
2i |0+ i(w—wr) o+ i(w+w)

1 1 1
2 (0 +iw) —dw, (0 +iw) iwy |
Normalizing these complex fractions gives

1 [(a—l—iw)—i—iwl (a—i—iw)—z’wl]

2 (0 +iw)? —w? (0+iw)? + w?
1 2iw1

T2 me)?—ﬁ]

F(w) =

and using s = ¢ + iw makes this



Problem 9

Show that the limit as s approaches infinity for F(s) = 5 jQ (Eq.
S Ldl
1.23) is zero, in accordance with Eq. 1.24.



Hint 1: Start by multiplying F(s) by %/%

F(s)—ﬁw%—( )(ﬁw%)

@ |=]o =



Hint 2: Simplifying this expression gives

® |»
—_

3
“1
S



Hint 3: Now take the limit as s — oo:
1
2

lim [F(s)] = lim
s+ %

S5—00 S§—00




Hint 4: As s approaches oo, the expression given in the previous
hint becomes

nm[F(s)]:SggO[ ! }:

S§—00



1
s ES S
F - 5 5 — T 24 2
(s) s 4 wi (%) (32 + w?

which gives
i 1

or




Problem 10

3s+2
52—5—2

Make pole-zero diagrams for the s-domain functions F'(s) =
and F(s) =

2s
s24+4s+13"



Hint 1: For F(s) = sgfﬁw start by factoring the denominator:

3s+ 2 3s+ 2

F(S):s2—s—2:(s+1)(s—2)'




Hint 2: Recall that the zeros occur at values of s for which the
numerator is zero. In this case, the numerator is zero at 3s +2 = 0,
S0 a zero exists at s = —2/3.



Hint 3: Recall also the poles occur at values of s for which the
denominator is zero. In this case, that occurs at s +1 = 0 and
s —2 = 0, so poles exist at s = —1 and s = 2. You can see the
pole-zero diagram for this case in the Full Solution for this problem.



Hint 4: For F(s) = the denominator can be factored as

2s
524-45+137

2s 2s

F(s) = - .
o) = 13 Gr2-8) s +2+3)




Hint 5: In this case, the numerator is zero at 2s = 0, so a zero
exists at s = 0, and the denominator is zero at s + 2 — 3¢ = 0 and
s+ 2+ 3i =0, so poles exist at s = =2+ 37 and s = —2 — 3i. You
can see the pole-zero diagram for this case in the Full Solution for
this problem.



Full Solution:

For F(s) = sffﬁQ, start by factoring the denominator:

3s + 2 3s+ 2

F(S):S2—s—2:(s+1)(s—2)'

Recall that the zeros occur at values of s for which the numerator
is zero. In this case, the numerator is zero at 3s + 2 = 0, so a zero
exists at s = —2/3.

Recall also the poles occur at values of s for which the denominator
is zero. In this case, that occurs at s+1 =0 and s —2 = 0, so poles
exist at s = —1 and s = 2.



Using the values of s given above, the pole-zero diagram looks like
this:

Imaginary
Axis (o)

-

s-plane

Zeroats=-2/3

\r\

» Real axis

/‘ (©)

Poleat s=-1 Poleat s=2




For F(s) =

2s :
773, the denominator can be factored as

25 B 2s
s2+4s+13  (s+2—3i)(s+2+30)

F(s) =

In this case, the numerator is zero at 2s = 0, so a zero exists at s = 0,
and the denominator is zero at s +2 —3i =0 and s+ 2+ 3i = 0, so
poles exist at s = —2 + 37 and s = —2 — 31.



The pole-zero diagram for this case looks like this:

Imag

inary

Axis (o)

s-plane P
>< -

Pole at s=-2+3i 7

| | A

.

Zeroats=0

—t—0—— » Real axis

Pole at s=-2-3i

N

X .

(o)







Chapter 2

Examples Solutions



Problem 1

The Fourier and Laplace transforms involve the integral of the prod-
uct of the complex-exponential basis functions and the time-domain
function f(t); the result depends on the even or odd nature of those
functions. Show that

a) Multiplying two even functions produces an even function
b) Multiplying two odd functions produces an even function

¢) Multiplying an even and an odd function produces an odd
function

d) Any function f(¢) may be decomposed into the sum f(t) =
feven(t) + foaa(t) of an even and an odd function defined by

£+ F(=1) 1) = f(=t)

fe'uen (t) = 9 9

fodd(t) =



Hint la: Recall that if f(¢) and g(¢) are both even functions, then
f(—=t) = f(t) and g(—t) = ¢(t). Now consider the function that
results when you multiply f(¢) and ¢(t).



Hint 2a: Call that new function fg (which is also a function of t),
and write the product as:



Hint 3a: Observe the effect of substituting —t for ¢ in the product:



Hint 4a: Note that f(—t) = f(¢) and g(—t) = g¢(t) since these
functions are both even, so the product is

fo(=t) = f(=t)g(=t) = F()g(t) = fg(?)

which means that the product fg is an even function.



Hint 1b: Recall that if f(¢) and g(t) are both odd functions, then
f(—=t) = —f(t) and g(—t) = —g(t). Now consider the function that
results when you multiply f(¢) and ¢(t).



Hint 2b: Call that new function fg¢ (which is also a function of t),
and write the product as:



Hint 3b: Observe the effect of substituting —¢ for ¢ in the product:



Hint 4b: Note that f(—t) = —f(t) and g(—t) = —g(¢) since these
functions are both odd, so the product is

fo(=t) = f(=t)g(=t) = [ f(D][=9(t)] = fg(?)

which means that the product fg is an even function.



Hint 1c: Recall that if f(¢) is an even function and ¢(t) is an odd
function, then f(—t) = f(¢) and g(—t) = —g(t). Now consider the
function that results when you multiply f(¢) and g(¢).



Hint 2c: Call that new function fg (which is also a function of t),
and write the product as:



Hint 3c: Observe the effect of substituting —¢ for ¢ in the product:



Hint 4c: Note that f(—t) = f(t) since f(¢) is an even function and
g(—t) = —g(t) since g(t) is an odd function, so the product is

fo(=t) = f(=1)g(=t) = F()[=9(t)] = = fg(t)

which means that the product fg is an odd function.



Hint 1d: To show that any function f(t¢) can be composed of the
even function f..., and the odd function f,qq given in the problem
statement, it’s necessary to show that fe.,., is even, that f,qq is odd,
and that the sum of these two functions gives the function f(¢).



Hint 2d: You can show that fe,e, is even by showing that feye,(t) =
.feven(_t):
S+ =0 - fE)+ @)

feven(_t) = 9 = 9 = feven(t)-




Hint 3d: You can show that f,4q is odd by showing that fyuq(t) =
— foda(—1):
f=) = fI=(=0] _ f(=) = Q)

fodd(_t) = 9 = 9 = _fodd(t)‘




Hint 4d: Show that the sum of fepe, and foqq is f(2):

o)+ foalt) = L0 +2f (=) , f®) —Qf(—t)
FO)+ )+ [(=t) = f(=) _ 2/(t)

B 2 =—5 =f)




Full Solution:
Part a) Multiplying two even functions produces an even function

Recall that if f(t) and ¢(t) are both even functions, then f(—t) =
f(t) and g(—t) = g(t). Now consider the function that results when
you multiply f(¢) and g(¢). Calling that new function fg (which is
also a function of t), you can write the product as:

But since both of these functions are even, f(—t) = f(¢) and g(—t) =
g(t), so the product is

fo(=t) = f(=t)g(=t) = F)g(t) = fg(t)

which means that the product fg is an even function.



Part b) Multiplying two odd functions produces an even function

If f(t) and g(t) are both odd functions, then f(—t) = —f(t) and
g(—t) = —g(t). Just as in the case of two even functions, consider
the function fg that results when you multiply f(¢) and g(t):

and

fa(=t) = f(=t)g(—1).
Since both of these functions are odd, f(—t) = —f(t) and g(—t) =
—g(t), so the product is

fo(=t) = f(=t)g(=t) = [ f(D][=9(t)] = fg(?)

which means that the product fg is an even function.



Part ¢) Multiplying an even and an odd function produces an odd
function

If f(t) is an even function and ¢(t) is an odd function, then f(—t) =
f(t) and g(—t) = —g(t). Just as in the cases of two even or odd
functions, consider the function fg that results when you multiply

f(t) and g(t):

and
fg(=t) = f(=t)g(—1).

Since f(t) is an even function, f(—t) = —f(t), and since g(t) is an
odd function, g(—t) = —g(t). So in this case the product is

fo(=t) = f(=t)g(=t) = fF(O)[—9(t)] = —fg(t)

which means that the product fg is an odd function.



Part d) Any function f(¢) may be decomposed into the sum f(t) =
feven(t) + foaa(t) of an even and an odd function defined by

Jeven(t) = w foda(t) = M

To show that any function f(¢) can be composed of the even function
feven and the odd function f,44 given in the problem statement, it’s
necessary to show that f.,., is even, that f,4q is odd, and that the
sum of these two functions gives the function f(¢).

You can show that fe,en, is even by showing that fe,e,(t) =

feven(_t):
oty = LENH IO _SCO410)

Likewise, you can show that f,qq is odd by showing that fou(t) =

— foda(—1):
fodd(_t) _ f(_t) _;[_(_t)] _ f(_t)Q_ f(t) _ _fodd(t)~

Finally, the sum of f.,., and foqq is

o) + Fona(t) = 20 +2f (=) , f(t) —2f(—t)
f@O)+ ft)+ f(=t) = f(=t) 2f(t)

- ! = 0]




Problem 2

The unilateral Laplace transform of the constant time-domain func-
tion f(t) = c is discussed in Section 2.1. Use the same approach to
find the s-domain function F'(s) and the region of convergence if the
time-domain function f(¢) is limited in time, specifically if f(t) = 2
for 0 <t <1land f(t) =0 for t > 1.



Hint 1: The unilateral Laplace transform gives the s-domain function

F(s): N
F(s) = /0 F(t)e=tdt.



Hint 2: Inserting the time-domain function f(t) =2 for 0 <t < 1
and f(t) = 0 for ¢ > 1 makes this

1
F(s):/ 2e % dt.
0



Hint 3: Evaluating the integral gives

F()_/12_Stdt——2 —st|!
s) = ; e —_Se |0
__2 73_0_2 s
= S[e e}—s[l e ]



Full Solution:
The unilateral Laplace transform gives the s-domain function F(s):

F(s) = /0 et

and inserting the time-domain function f(¢t) =2 for 0 < ¢ < 1 and
f(t) =0 for t > 1 makes this

1
F(s):/ 2¢ ! dt.
0

Evaluating the integral gives

1 2 1
F(s) = / 2 *tdt = —6_8t|0
0 -5

=_§ e — ] :%[1_68].



Problem 3
Find the real and imaginary parts of the unilateral Laplace transform
F(s) of the exponential time-domain function f(t) = e* discussed
in Section 2.2 and specify whether each is even or odd.



Hint 1: For the time-domain function f(¢) = e, the unilateral
Laplace transform gives F'(s) = -, as shown in Section 2.2 of the

text. To find the real and imaginary parts of this function, start by
using the relation s = ¢ + iw, which makes F'(s) look like this:

P(s) = 1 1 _ 1

s—a (0c+iw)—a (0—a)+iw




Hint 2: This expression can be rationalized by multiplying both
numerator and denominator by the complex conjugate of the de-
nominator:




Hint 3: Perform the multiplication shown in the previous hint:

(0 —a) —iw
(0 —a)?+w?

F(s) =



Hint 4: Write the real part of F'(s) as

(0 —a)

Re[F(s)] = m.



Hint 5: Write the imaginary part of F(s) as



Hint 6: Note that the only term containing w in the real part of F(s)
involves w?, so substituting —w for w does not change the value of
the real part, so this part is even with respect to w.

Also note that the odd part includes a term with the first power of
w, so substituting —w for w changes the sign of the imaginary part,
which means this part is odd.



Full Solution:

For the time-domain function f(t) = e*, the unilateral Laplace
transform gives F(s) = Sia, as shown in Section 2.2 of the text.
To find the real and imaginary parts of this function, start by using
the relation s = o + iw, which makes F'(s) look like this:

1 1 1
F(S):s—a:(0+iw)—a: (0 —a)+iw

This expression can be rationalized by multiplying both numerator
and denominator by the complex conjugate of the denominator:

Fle) = 1 l(a—a)—iw}

(0 —a)+iw | (0 —a) —iw

and multiplying gives



Hence the real part of F(s) is

Re{F(s)] =

and the imaginary part of F'(s) is

—w

Im[F(s)] = —————
F(s)] (0 —a)?+ w?

The only term containing w in the real part of F(s) involves w?, so

substituting —w for w does not change the value of the real part, so

this part is even with respect to w.

But the odd part includes a term with the first power of w, so sub-
stituting —w for w changes the sign of the imaginary part, which
means this part is odd.



Problem 4

Use the approach of Section 2.2 and the results of the previous prob-
lem to find the real and imaginary parts of F'(s) and the ROC for
the time-domain function f(t) = 5e~.



Hint 1: The unilateral Laplace transform gives the s-domain function

F(s): .
F(s) = /0 F(t)e—dt

and inserting the time-domain function f(¢) = 5e~3" makes this

F(s) :/ Se 3te st = 5/ et
0 0



Hint 2: Doing the integration gives

o 5
F(s)=5 et = — = (|
(s) /0 —(s+3) ‘0



Hint 3: Inserting the limits makes this

F(s) = =gy [ =] =

as long s > —3 (since s < —3 would make the first term infinite
rather than zero).



Hint 4: The real and imaginary parts of F(s) can be found using
the result of the previous problem with a = —3 and a multiplicative
factor of 5.



Hint 5: For the real part, this gives

oc+3

Re[F(s)] = 5m.



Hint 6: For the imaginary part this gives

—W

Im[F(s)] = CEE



Full Solution: The unilateral Laplace transform gives the s-domain
function F(s):

F(s) = /0 T Fe -t

and inserting the time-domain function f(¢) = 5e~3" makes this

F(s) :/ Se e s dt = 5/ e~ dt,
0 0

Doing the integration gives

o0 . 5
F(s) =5 g = — eI
=5 e Gy b

and inserting the limits makes this

)
—(s+3)

F(s) = [e’oo — eo} =

(s +3)

as long s > —3 (since s < —3 would make the first term infinite
rather than zero).



The real and imaginary parts of F'(s) can be found using the result
of the previous problem with a = —3 and a multiplicative factor of
5. For the real part, this gives

o+ 3

Re[F(s)] = 5m

and for the imaginary part this gives

—W

Im[F(s)] = CE



Problem 5
Sketch the scaled time-domain cosine function f(t) = %(Qt) and use
the definition of the unilateral Laplace transform (Eq. 1.2) to find
F(s) for this function.



Hint 1: To sketch the time-domain function f(t) = 0054(%), note

that the cosine function starts with amplitude of 4+1 at time t = 0
and oscillates between +1 and -1 over one period. In this case the
amplitude is 0.25 due to the factor of 4 in the denominator of f(t),
and the angular frequency of oscillation w is 2 rad/sec, which means
the period is T" = 27 /w = 3.14 sec. You can see a sketch of this
function in the Full Solution for this problem.




cos (2t)
4

Hint 2: For the time-domain function f(t) =
Laplace transform is

+o0o +oo 21
Fs)= [ flt)etat = / SLICH
0— 0 4

, the unilateral




Hint 3: Pull the multiplicative factor of 4 outside the integral and
use the inverse Euler relation

eth + 6—1215

cos (2t) = 5



Hint 4: The integral

LT boo
F(S) i / 6[—0+z(2—w)]tdt +/ 6[—0—2(2+w)]tdt '
8 /o 0

can be evaluated by calling the upper limit of integration 7 and
taking the limit as 7 goes to infinity.



Hint 5: Evaluating the integral gives

F(S)ZéL_i<12_w)+a+i(12+w)]7

and before combining these fractions, it helps to regroup the terms
in the denominators like this:

F(s):%[ ! ! ]

(J+iw)—2i+ (0 + iw) + 21

Now find the common denominator and add the terms.



Full Solution: To sketch the time-domain function f(t) = 0054(%),
note that the cosine function starts with amplitude of +1 at time
t = 0 and oscillates between +1 and -1 over one period. In this case
the amplitude is 0.25 due to the factor of 4 in the denominator of
f(t), and the angular frequency of oscillation w is 2 rad/sec, which
means the period is T = 27 /w = 3.14 sec. Here’s a sketch with f(t)

on the vertical axis at time ¢ on the horizontal axis with a plot of

\\\ cos(t)

cos(2t)

/
/
J
s
/
\ /
04 \ - /
r ’
. 4 )
\ /
I \ s
\ )
\ /
\ /

the function cos (¢) (dashed line) shown for comparison. Note that
the factor of 2 in front of ¢ in the argument of the function cos (2t)
compresses the plot in the horizontal dimension, while the factor of
4 in the denominator (outside the cosine function) compresses the
plot in the vertical direction.



For the time-domain function f(t) = Cosft), the unilateral Laplace

transform is

+o0o +oo 2
Fls)= | f(t)etdt = / €05 (2) sty
0~ 0 4

Pulling the multiplicative factor of 4 outside the integral and using
the inverse Euler relation

12t —i2t
2
makes this
1 +o00 ei2t + e—i?t
F — - = —stdt
=3 =5
1 +oo (i2—o—iw)t (—i2—o—iw)t
1 / {e +e } gt
4/, 2
1 +0c0 ] +00 ]
_ - |:/ e[fo+z(27w)]tdt +/ e[az(2+w)]tdt1 .
8 0 0

As shown in the text, this type of integral can be evaluated by
calling the upper limit of integration 7 and taking the limit as 7 goes



to infinity. That gives

1
—0+1i(2 —w)

1 .
& r—0

1
T iR o

e[ai(2+w)]t:|

0
and inserting the limits of integration makes this

F@%:%Lﬂ+%;—m&+ﬁﬂ—%2+mg}

1 1 n 1

S8 lo—i2—w) o+i24w)]’
Before combining these fractions, it helps to regroup the terms in
the denominators like this:

1 1 1
Fls) = 8 [(a+iw) —i t (0+iw)+2z} '
Now find the common denominator
1 (o +iw) + 21
Fls) =3 {[(0 Fiw) — 2i][(0 + iw) + 2i]
n (0 +iw) — 21 ]
[(o +iw) + 2i][(0 + iw) — 2i]







Problem 6

Use the definition of the unilateral Laplace transform to find F(s)
for the time-offset sine function f(¢) = sin (¢t — 7/4) for t > 7/4 and
f(t)=0fort <m/4.



Hint 1: For the time-domain function f(¢) = sin (¢t — 7/4) for ¢t >
w/4 and f(t) = 0 for t < w/4 the unilateral Laplace transform is

+oo +0oo
F(s) = f(t)e *tdt = / sin (t — w/4)e” Ot

0— w/4

which can be evaluated using the inverse Euler relation for the sine

function: ' .
e’L(t—Tl’/4) _ e—z(t—w/4)

sin (t —7/4) = 5




Hint 2: Before performing the integration

F(s) =

+0o —ot—iwt+it—in/4 _ —ot—iwt—it+im/4
e €
dt,

i 2

it helps to gather the time-dependent terms in the exponentials and

then to separate the integrals for these two terms and pull the con-
6

stant term ¢ out of the first integral and ® out of the second

integral.



Hint 3: The integrals in the expression

—im/4  ptoo ' ir/4  ptoo ‘
F(S) _ (& > / e[—cr—z(w—l)]tdt . 62. / e[—g—z(w—i—l)]tdt'
g m/4 ¢ w/4

can be evaluated by calling the upper limit 7 and taking the limit
as T — 00.



Hint 4: The expression

6(—7r/4)[z7-i—iu.1] 1 1
2i (c+iw)—i (0+4iw)+1

F(s) =

can be simplified by finding the common denominator for the two
fractions and then adding the two terms (the details are provided in
the Full Solution for this problem).



Full Solution:
For the time-domain function f(t) = sin(t — 7 /4) for t > /4
and f(t) = 0 for t < 7/4 the unilateral Laplace transform is

+oo 400
F(S) = f(t)efstdt = / sin (t _ 7T/4)e*(0+iw)tdt
0~ /4

Using the inverse Euler relation for the sine function

it=m/4) _ o—i(t—m/4)

in(t—m/4) =
sin (t — 7 /4) 5;
makes this
+oo i(t—m/4) _ —i(t—m/4) )
F(s) :/ € ,6 e (it gy,
71_/4 2Z
or
+o0o —ot—iwt+it—in/4 _ —ot—iwt—it+im/4
P = [ F .6 it
n/4 21

Gathering the time-dependent terms in the exponentials gives

F(s) = dt.

/+OO e[fofi(wfl)]tefiﬂ/ll _ e[fofi(w+1)]t€i7r/4

" 2i



Separatmg the integrals for these two terms and pulling the constant

term <" out of the first integral and 6 ® out of the second integral
gives
—im/4 +o0 im/4 +o00
F(s) = ‘ ./ / e Gl : / elmomilwtDlt gy
2i w/4 2i /4
Calling the upper limit 7 and taking the limit as 7 — oo makes this
—im /4 i /4 T )
F(s) = " lim elmo=iDltgy  © "y elo—tw Dl gy
22 T—00 /4 22 T—00 7r/4

which evaluates to

—im/4 1 ) T
F(s) = ¢ — lim , elmo—iw=1lt
20 oo | —0 —i(w—1) /d
im/4 T
_ € — lim ‘1 plmo—ilwt D]t .
2i roo0 | —0 —i(w+1) /4

Inserting the integration limits and letting 7 — oo makes this

e—iﬂ/4

1

Fs) == {o+uw—n

e[—a—i(w—l)]7r/4:|

67l7r/4

1 e[—o‘—i(w+l)}7r/4
2 |o+i(w+]1)



or

e—iﬂ/4e[—oﬂ/4—iw7r/4+i7r/4] ei7r/4€[—cr7r/4—iw7r/4—i7r/4}

Fls) = 2i[o +i(w — 1)] 2o Fi(w+1)]
(l-om/4—iwr /4 (l-om/a—iwrn /4
T 2o +i(w—1)] 2o +i(w+1)]
(/40w o~/ 4) o+
T 2o t+iw) —1]  2i[(o +iw) + 1]
e(=m/4)[o+iw] 1 1
T (0+iw)—i (0 +iw)+i

Finding the common denominator for the two fractions in this ex-
pression gives

e(=m/4)o+iw] (0 +iw) +i
24 (o0 +iw) —i][(0 + iw) + i
(0 +iw) —1
(0 + iw) +i][(0 + iw) — ]

F(s) =




or

(/o i)

(0 +iw) —i

“a+wo+i_

2i o+iw)?+1
B e(ffr/4)[cr+iw] 2%
B 2i (0 +iw)2+1
_ p(=m/D)o+i) 1

(o +iw)2+1

|

(04 iw)?+1

|



Problem 7

Use the definition of the unilateral Laplace transform to find F(s)
for f(t) = t, then compare your result to Eq. 2.23 for n = 1. Also
show that the expressions for the real and imaginary parts of F(s)
given in Eqgs. 2.24 and 2.25 are correct.



Hint 1: For the time-domain function f(¢) = ¢ the unilateral Laplace
transform is

—+00

+o0
F(s) = f(t)e ®tdt = / te=*'dt,
0 0

which can be evaluated by setting the upper limit to 7 and taking
the limit as 7 — oo and using the relation

ax 1
/:ve‘”d:c S (x — —> .
a a



Hint 2: Using the relation given in the previous hint and inserting
the limits of integration gives

- [20-2)]-10) -3

which can be compared to the result of Eq. 2.23 with n = 1.



Hint 3: To verify the real and imaginary parts of F(s) given by
Egs. 2.24 and 2.25, start by writing s as ¢ + iw and squaring the
denominator.



Hint 4: The expression

1
(02 —w?) + 2iow

F(s) =

can be rationalizing this expression by multiplying both numerator
and denominator by the complex conjugate of the denominator.



Hint 5: Note that the expression
(0_2 . w2)2 _|_ 40_2w2

can be simplified by squaring the term in parentheses and then
adding the result to the 402w? term (you can see the details in the
Full Solution for this problem).



Full Solution:
For the time-domain function f(¢) = ¢ the unilateral Laplace trans-

form is
+o00

F(s) = ft)e*dt = /0 +OO te *'dt.

0

This integral can be evaluated by setting the upper limit to 7 and
taking the limit as 7 — oo and using the relation

axr 1
/me““”dx & (x — —) .
a a

T —st 1
F(s) = lim te”*'dt = lim {e (t - —)}

T—=00 Jo T—00

Hence

T

Inserting the limits gives

Using Eq. 2.23 with n = 1 gives F(s) as

U
Fs) = —— = — = —.

gntl gl+l 52




To verify the real and imaginary parts of F(s) given by Eqs. 2.24
and 2.25, start by writing s as o+ iw and squaring the denominator:
F(s) = lz = 1. = .1
s (0 +iw)? 02+ 2iow — w?
1
(02 — w?) + 2iow’

Rationalizing this expression by multiplying both numerator and
denominator by the complex conjugate of the denominator gives

1 (0% — w?) — 2iow
(02 — w?) + 2iow | (02 —w?) — 2iow
(0% — w?) — 2iow
(02 — w22 + 4o2w?

F(s) =




Hence the real part of F(s) is

Fs) o2 — w? o2 — w?
S) = =
(02 —w?)?2 +40%w? o* —20%w? 4+ w* + 40%w?
o2 — w? o2 — w?

ot 4202 +wt (02 + w?)?

and the imaginary part of F(s) is

F(s) —20w —20w
8 = g
(02 —w?)? 4+ 40%w? o —20%w? 4+ w* + 402W?
—20w —20w

ot 42022 +wt (02 4 w?)?



Problem 8

Use the definition of the unilateral Laplace transform and the ap-
proach of Section 2.4 to find F(s) for the time-domain function

f(t) = (t—2)%



Hint 1: To find F(s) for the time-domain function f(t) = (t — 2)?,
start by inserting this function into the definition of the unilateral
Laplace transform:
+oo “+o0o
Fs)= [ f(t)e—tdr = / (t — 22—t
0

0

and squaring the ¢t — 2 term.



Hint 2: The three integrals in the expression

400 400 o0
F(s) :/ th—StdtJr/ (—4t)e—stdt+/ de~*'dt
0 0 0

can be evaluated by setting the upper limit to 7 and taking the limit
as 7 — 00.



Hint 3: For the first integral shown in the previous hint, it’s helpful
to use the relation

/xQe‘”dx =& (x2 _ + —2) )
a a a



Hint 4: The relation

axr 1
/xea’”dx =& (JJ R
a a

is useful for evaluating the second integral.



Hint 5: Using the relations given in the previous two hints gives

ety 2t 2
P = tim | (7 2 o)

and inserting the limits of integration gives F(s).



Full Solution:

To find F(s) for the time-domain function f(t) = (¢t — 2)?, start by
inserting this function into the definition of the unilateral Laplace
transform:

+oo +oo
F(s) = f(t)e stdt = / (t —2)%e*dL.
0 0

Squaring the ¢t — 2 term makes this

+o00o
F(s) = / (£ — 4t + 4)edt
0

+00 +o00 +00
:/ th_Stdt—l—/ (—4t)e_3tdt+/ 4edt
0 0 0

These three integrals can be evaluated by setting the upper limit to
7 and taking the limit as 7 — oc:

F(s) = lim { / teStdt — 4 / te *tdt + 4 / estdt]
T—00 0 0 0

For the first integral, it’s helpful to use the relation

/x%“"”dm =& (:L‘2 _ + —2) )
a a a



and as in the solution for the previous problem, the relation

axr 1
/xe‘”dx - (x — —>
a a

is useful for evaluating the second integral. Using these relations
gives




Problem 9

Use the definition of the unilateral Laplace transform and the ap-
proach of Section 2.5 to find F(s) for the time-domain function

f(t) = cosh (%).



Hint 1: Insert the expression for f(t) = cosh (%) into the unilateral
Laplace transform equation:

+oo +oo t
F(s) = ft)e*tdt = / cosh (5) e *tdt
0

0



Hint 2: Follow the approach used in Section 2.6, in which this inte-
gral is evaluated using the relationship between the hyperbolic cosine
function and exponential functions:

‘ t _t
cosh (L) =& te?
2 2



Hint 3: The integrals in the unilateral Laplace transform

]. +oo 1 oo 1
F(s) = / e~ =gt 4 / e~ T2l
2 0 0

can be evaluated using the same steps as shown in the text (with
a = 3). You can see the details in the Full Solution for this problem.



Full Solution:
Inserting the expression for f(t) = cosh (%) into the unilateral Laplace
transform equation gives

+oo +o0o t
F(s) = f(t)e*tdt = / cosh (5) e *tdt
0

0

Following the approach used in Section 2.6, this integral can be eval-
uated using the relationship between the hyperbolic cosine function
and exponential functions. In this case that relationship is

t t
t ez +e 2
h — = —
COS (2) B

which makes the unilateral Laplace transform look like this:
t t 1
ez +e 2 2

400 +oo (z—s)t (flfs)t
F(s) = e~otdt = i SN
2 2
0 0

]_ +OO 1 +OO 1
== [ / e~ =tqt + / e—<s+z>tdt} .
2 0 0

Evaluating these integrals using the same steps as shown in the text
(with a = 1) leads to

s+%+s—% 1 25 s
82_(1)2 2|21 2L

2

F(s) =

1
2




Problem 10

Find the unilateral Laplace transform of the time-domain function
f(t) = 6cosh® (—4t) — 3sinh (2t).



Hint 1: Just as the solution for the previous problem closely parallels
the cosh (at) example in the text, for this problem both the cosh (at)
and the sinh (at) examples in the text provides helpful guidance.
However, since the time-domain function f(¢) in this case involves
the square of the hyperbolic cosine function, start by squaring the
exponential form of the cosh (at) function.



Hint 2: After squaring the hyperbolic cosine function, the time-
domain function f(¢) can be written as

f(t) = 3 cosh (—8t) + 3 — 3sinh (2¢)
and inserting this function into the unilateral Laplace transform
gives
+oo

F(s) = i f(t)e *tdt

+o00
= / [3 cosh (—8t) + 3 — 3sinh (2t)] e *dt.
0



Hint 3: Each of these transform integrals shown in the previous hint
is analyzed in the text (hyperbolic cosine function result in Eq. 2.30,
constant function result in Eq. 2.4, and hyperbolic sine function
result in Eq. 2.33).



Hint 4: Add the results for the three functions described in the pre-
vious hint to produce F'(s) for the combined time-domain function.



Full Solution:

Just as the solution for the previous problem closely parallels the
cosh (at) example in the text, for this problem both the cosh (at)
and the sinh (at) examples in the text provides helpful guidance.
However, since the time-domain function f(¢) in this case involves
the square of the hyperbolic cosine function, a bit of preliminary
analysis is needed.

That analysis can be done by squaring the exponential form of the
cosh (at) function:

at —at\ 2
cosh? (at) = (%)

_ eat + 6—at eat + e—at
B 2 2

eateat + eate—at + e—ateat + e—ate—at

4
B e2(lt +€0 + e0 _|_e—2at B €2at _'_e—Qtlt +2
B 4 B 4
2at —2at 1 1
= %+ 5= icosh(Qat) + 5

With this result in hand, the time-domain function f(¢) can be writ-



ten as
f(t) = 6 cosh? (—4t) — 3sinh (2t)
=6 (% cosh (—8t) + %) — 3sinh (2¢)
= 3 cosh (—8t) + 3 — 3sinh (2¢)
and inserting this function into the unilateral Laplace transform

gives

+oo
F(s) = i f(t)e *tdt

+oo
= / [3 cosh (—8t) + 3 — 3sinh (2t)] e *dt
0

or
+o0 +o0
F(s) = 3/ cosh (—8t)e™*"dt + 3/ e tdt
0 0

400
— 3/ sinh (2t)e~*"dt.
0

Each of these transform integrals is analyzed in the text. The trans-
form of the hyperbolic cosine function is given by Eq. 2.30:

Fs) = -

g2

— q2



and with multiplying factor of 3 and a = —8 this becomes

S S
F(s) =3 =3 .
) =3 p =% —w

The transform of the constant function is given by Eq. 2.4:

c
F(s) = -
(5) ="
and with with ¢ = 3 this is
3
F(s)=—.
(s) ="

B 2 6
s2—(2)2 s2—4

Combining these three terms gives the unilateral Laplace transform
of the function f(t) = 6 cosh® (—4t) — 3sinh (2t):
S 3 6

82—64+g_32—4'

F(s)=3



Chapter 3

Properties Solutions

Problem 1

Use the linearity property of the unilateral Laplace transform and
the examples of F(s) for basic functions in Chapter 2 to find F(s)
for f(t) =5 — 2e"? + Lsin (6t) — 3t* + 8sinh (0.2¢).



Hint 1: The linearity property tells you that the Laplace transform
of the function f(t) = 5—2¢"/?+ 1sin (6t) — 3t* 4 8 sinh (0.2¢) is the
sum of the Laplace transforms of the terms.



Hint 2: The linearity property also tells you that you can move
multiplicative constants outside the Laplace transform, so F'(s) is

F(s) = L[f(t)] = 5L[1] — 2L[e"?] + %L[sin (61)]
— 3L[t"] + 8L[sinh (0.2t)].



Hint 3: The Laplace transform of a constant function is discussed in
Section 2.1, and Eq. 2.4 with constant ¢ = 1 tells you that

=1



Hint 4: The Laplace transform of an exponential function is dis-
cussed in Section 2.2, and Eq. 2.10 with constant a = 1/2 says

et = 1

-.
§—3



Hint 5: The Laplace transform of a " function is discussed in Section
2.4, and Eq. 2.23 with n = 4 tells you that

4!



Hint 6: The Laplace transforms of hyperbolic sinusoidal functions
are discussed in Section 2.5, and Eq. 2.33 with a = 0.2

0.2

Llsinh (020)] = 55—



Full Solution:

The linearity property tells you that the Laplace transform of the
function f(t) =5 — 2e"/% + 1sin (6t) — 3¢* + 8sinh (0.2t) is the sum
of the Laplace transforms of the terms. So
1
F(s) = L[f(t)] = L[5] — L[2¢"/?] + L[ sin (61)]
— L[3t"] + L[8sinh (0.2t)].

The linearity property also tells you that you can move multiplicative
constants outside the Laplace transform, so F(s) is

F(s) = L[f(t)] = 5L[1] — 2L[e"?] + %L[sm (61)]
— 3L[t"] + 8L[sinh (0.2t)].

The Laplace transform of a constant function is discussed in Section
2.1, and Eq. 2.4 with constant ¢ = 1 tells you that

The Laplace transform of an exponential function is discussed in
Section 2.2, and Eq. 2.10 with constant a = 1/2 says
1
L'[et/ N= ——

-
§—3



The Laplace transforms of sinusoidal functions are discussed in Sec-
tion 2.3, and Eq. 2.17 with angular frequency w; = 6 gives

6

Ll[sin (6t)] = (07

The Laplace transform of a t" function is discussed in Section 2.4,
and Eq. 2.23 with n = 4 tells you that

41
47 _
LIt = =

The Laplace transforms of hyperbolic sinusoidal functions are dis-
cussed in Section 2.5, and Eq. 2.33 with a = 0.2

0.2

Llsinh (020)] = 55—

Putting these terms together and inserting the multiplicative con-
stants gives the Laplace transform of the time-domain function f(t) =
5 — 2¢'? + Lsin (6t) — 3t* + 8sinh (0.2¢) is

1 1 14! 4! 0.2
Fs) = 5- —2 S S S .
(s) s T s—1 T35 U T (0.2)2




Problem 2

Use the linearity, time-shift, and frequency-shift properties of the
unilateral Laplace transform to find F(s) for

a) f(t)=2e7 + Lsin (6t —9) — 3(t — 2)* + 8sinh (0.2t — 0.6)

b) f(t) = —5e73 + ' cos (%) +e3 (%)2 _ %Cosggllt).



Hint 1a: As shown in the text and the previous problem, the linearity
property tells you that the Laplace transform of the function f(t) =
2"z + $sin (6t — 9) —3(t —2)* +8sinh (0.2t — 0.6) is the sum of the
Laplace transforms of the terms.



Hint 2a: Once again, the linearity property can be used to move
multiplicative constants outside the Laplace transform, making F(s)

F(s) = LI ()] = 2£[6"%"] + S Llsin (66 — 9)] - 3L[(t — 2)"
4+ 8L[sinh (0.2t — 0.6)].



Hint 3a: Before using the time-shift property of the Laplace trans-
form, it helps to recast the terms involving ¢ into the form ¢(t—a), in
which ¢ is a multiplicative constant and a is a (positive or negative)
additive constant.



Hint 4a: With F(s) in the form,
F(s) = LIf(1)] = 2L[e2*¥] + %E[sin 6(t — 1.5)] — 3L[(t — 2)"]
+ 8L[sinh (0.2(t — 3)].

The Laplace transform of each term can be taken and the time-shift
property applied. That property says

LIf(t = a)] = e LIf()].



Hint 5a: For each term in f(¢), the Laplace transform can be deter-
mined by using the time-shift property and the Laplace transform
of a the relevant function. The relevant functions are exponential
functions (Section 2.2) for the first term, sinusoidal functions (Sec-
tion 2.3) for the second term, t" functions (Section 2.4) for the third
term, and hyperbolic sinusoidal functions (Section 2.5) for the fourth
term. Details of the Laplace transform for each term are shown in
the Full Solution for this problem.



Hint 1b: The linearity property tells you that the Laplace transform
of the function f(t) = —5e 5 +¢ Feos (4 b ez (—)2 ;COSh(‘Lt is the
sum of the Laplace transforms of the terms



Hint 2b: Once again, the linearity property can be used to move
multiplicative constants outside the Laplace transform, making F(s)

F(s)=L[f(t)] = —5/:[6_%} + L[e’ cos (ﬁ)] + iﬁ[eg(tﬂ

3
cosh (4t)
—m )

1
3£l



Hint 3b: With F(s) in the form shown in the previous hint, the
Laplace transform of each term can be taken and the frequency-shift
property applied. That property says

L f(1)] = F(s — a)].



Hint 4b: The frequency-shift property can be applied to the first
term of f(t) by writing that term as

and using the known Laplace transform of a constant function.



Hint 5b: The frequency-shift property can be applied to the second
term of f(t) by writing that term as

Lle' cos (%)] = L[e" cos (%)]

and using the known Laplace transform of a cosine function:

F(s) = L][cos (%)] = ﬁs(g)g



Hint 6b: The frequency-shift property can be applied to the third
term of f(t) by writing that term as

Lle3 (8)?] = Llez' ()
and using the known Laplace transform of a power-of-t function:

2!



Hint 7b: The frequency-shift property can be applied to the final
term of f(t) by writing that term as

cosh (4t)

e

L] = L[e * cosh (4t)]

and using the known Laplace transform of a cosh function:

F(s) = L[cosh (4t)] = TR



Full Solution:
Part a:

As shown in the text and the previous problem, the linearity property
-3
tells you that the Laplace transform of the function f(t) = 2T +

3 sin (6t — 9) —3(¢t—2)*+8sinh (0.2¢ — 0.6) is the sum of the Laplace

transforms of the terms. So

F(s) = L[f(t)] = L[2e 7] + E[ sin (6t — 9)] — L[3(t — 2)*]
+ L[8sinh (0.2t — 0.6)].

Once again, the linearity property can be used to move multiplicative
constants outside the Laplace transform, making F'(s)

2L[e ] + E[Sln (6t — 9)] — 3L[(t — 2)]
+ 8L[sinh (0.2¢ — 0.6)].

=
N
Il
5
~
—
Z
I

Before using the time-shift property of the Laplace transform, it
helps to recast the terms involving ¢ into the form ¢(t — a), in which
¢ is a multiplicative constant and «a is a (positive or negative) additive



constant. That gives

F(s) = L[f(t)] = 2L[e2] + %E[sin6(t — 1.5)] = 3L[(t — 2)"]
+ 8L][sinh (0.2(¢t — 3)].

With F(s) in this form, the Laplace transform of each term can
be taken and the time-shift property applied. That property says

LIf(t = a)] = e LIf(1)],

and for the first term of f(¢) the Laplace transform can be deter-
mined by using this property and the Laplace transform of an expo-
nential function (Section 2.2):
L(-8)] _ 35 L1 b (0] _ 085 L
2L[e2V" V] = 2e7 Le?V] = 2e7 ——
ST 3

The Laplace transform of the second term of f(¢) can be determined
by using the time-shift property and the Laplace transform of a
sinusoidal function (Section 2.3):

1 1 1 6
gﬁ[Sin 6<t — 15)] = 56_1'555[8111 G(t)] = §6_1.5SS—|——36.

For the third term of f(t¢), the Laplace transform can be determined
by using the time-shift property and the Laplace transform of a t"



function (Section 2.4):
—3L[(t —2)! = =3e *L[(t)!] = —3e > —.

The Laplace transform of the fourth term of f(¢) can be determined
by using the time-shift property and the Laplace transform of a
hyperbolic sinusoidal function (Section 2.5):

0.2

. _ —3s . o —3s
8L[sinh 0.2(t — 3)] = 8e™>*L]sinh (0.2¢)] = 8e =004

Putting these terms together givei the Laplace transform of the
time-domain function f(t) = 2e2 + gsin (6t —9) — 3(t — 2)* +
8sinh (0.2t — 0.6):

0.2

1 6 4! .
o —3s —1.5s —2s —3s
F(s) =2 ——= + s " ——— —3e = + 8e = 004"

s — 3 s+ 36



Part b:

The linearity property tells you that the Laplace transform of the
function f(t) = —5e™3 4+ e Feos () + ez (%)2 - %C%:# is the sum

of the Laplace transforms of the terms So

F(s)=L[f(t)] = ﬁ[—56_%} + L][e* cos(%)] + Lle 3 (t) ]

2
1 cosh (4t)
ST

Once again, the linearity property can be used to move multiplicative
constants outside the Laplace transform, making F'(s)

F(s) = LIf()] = 5Ll + £[e" cos ()] + 1 Lleb (1))
B %E[cosilggélt) I

With F(s) in this form, the Laplace transform of each term can
be taken and the frequency-shift property applied. That property

says
LI f(t)] = F(s — a)].

This property can be applied to the first term of f(t) by writing that

term as



and using the known Laplace transform of a constant function (such
as 1):

Hence
1

Lle73'] = F(s—a) .

The frequency-shift property can be applied to the second term of
f(t) by writing that term as

Lle! cos (%)] = Le" cos (%)1

and using the known Laplace transform of a cosine function:

F(s) = L[cos (%)] = ﬁ(é)?'
Hence

£[eucos(%)] — Pls—a) = (S_‘;);i o5

The frequency-shift property can be applied to the third term of f(¢)
by writing that term as




and using the known Laplace transform of a power-of-t function:

53
Hence
21

Llez'(t)?] = F(s —a) =

The frequency-shift property can be applied to the final term of f(t)
by writing that term as

cosh (4t)
o3t

L[ ] = L[e % cosh (4t)]

and using the known Laplace transform of a cosh function:

F(s) = L[cosh (4t)] = TR

Hence
(s+3)

Lle % cosh (4t)] = F(s —a) = Gi3E-16



Problem 3

Use the linearity property of the unilateral Laplace transform to find
F(s) for f(t) = (2t) + (%)2, then show that using the scaling prop-
erty of Section 3.3 gives the same result.



Hint 1: Using the linearity property, the Laplace transform of the
function f(t) = (2t)>+ (%)2 can be written as the sum of the Laplace
transforms of the terms:




Hint 2: Linearity also allows the constants to be pulled out:

F(s) = £I(0)] = 8L[°] + 3£1(0))



Hint 3: Use the power-of-t property of the Laplace transform (Eq.
2.23):

n!
gnt+l :

Lt =




Hint 4: Alternatively, in this case you can find F'(s) by applying the
scaling property of the Laplace transform (Eq. 3.8), which says

clran] = £ ().

a a



Hint 5: The scaling property can be applied to the first term of f(t)
with a = 2:

ci@e) =5 ().



Hint 6: The scaling property can be applied to the second term of

F(t) with a = 1/2:
<[] ()



Full Solution:

Using the linearity property, the Laplace transform of the function
f(t) = (2t)% + (3)2 can be written as the sum of the Laplace trans-

()]

forms of the terms:
and linearity also allows the constants to be pulled out:

F(s) = LIf ()] = L[(2t)°] + £

~
o
I
D
=
=
[

SEI(1)°) + LI

Using the power-of-t property of the Laplace transform (Eq. 2.23)

n!
8n+1

L[t =

gives
3! 120 48 11

F(S) :E[f(t)] :8F+Z@7¥+253'



Alternatively, in this case you can find F'(s) by applying the scaling
property of the Laplace transform (Eq. 3.8), which says

cifan) = -1 (2).

a a

This can be applied to the first term of f(¢) with a = 2:

e

and since L[t?] = sé% = &, the scaling property gives

ERE §< 6) =3 (5:) = %

Applying the scaling property to the second term of f(t) with a =
1/2:

AN Y

2 1/2 1/2

and since L[t?] = 522% = %, the scaling property gives

|6y ()35

L




Combining the scaling results for these two terms gives

F(s) = LIf(0)] = 5 + 35

2 53

in accordance with the results obtained by applying the linearity
property.



Problem 4

Take the derivative of each of the following functions with respect
to time, then find the unilateral Laplace transform of the resulting
function and compare it to the result of using the time-derivative
property of the Laplace transform on the original function:

a) f(t) = cos (wqt)
b) f(t)=e*
c) f(t) =1t



Hint la: The derivative of f(t) = cos (wit) with respect to time is

d[cos (wrt)]

o = —wj sin (wyt).



Hint 2a: The Laplace transform of the derivative shown in the pre-
vious hint is

2
_wl

L[—wy sin (wit)] = —wy L]sin (wqt)] = 21w
i



Hint 3a: The time-derivative property of the Laplace transform says

e[ B2 = s - s,



Hint 4a: For f(t) = cos (w;t), the Laplace transform is F'(s) = —=

24w’



Hint 1b: The derivative of f(t) = e™2" with respect to time is

d[€72t]

= —2¢ 7.
dt ‘




Hint 2b: The Laplace transform of the derivative shown in the pre-

vious hint is ] 5
L]—2e72 = —2 ==
[=2¢™] s+2 s+2




Hint 3b: For f(t) = cos (wit), the Laplace transform is F(s) = =

24w’



Hint 1c: The derivative of f(t) = t* with respect to time is

dit’] _ .,
=32
dt



Hint 2c¢: The Laplace transform of the derivative shown in the pre-

vious hint is ol ¢
L[3t] = 3L[t] = 33_?; = —.



Hint 3c: For f(t) = cos (wit), the Laplace transform is F(s) = =

24w’



Full Solution:
Part a:

The derivative of f(t) = cos (wit) with respect to time is

d t
[cosd(tm )] oy sin (wit)
and the Laplace transform of this derivative is
2
L[—wy sin (wit)] = —wi L]sin (wit)] = ﬁ
The time-derivative property of the Laplace transform says
df (t
c {ﬁ} — sF(s) — £(0)
dt
and for f(t) = cos (wit), the Laplace transform is F'(s) = 2, so
1

e[ TP =56 = 10 = s s @ =5 -1

dt T U2 4w s2 + w?

Hence

L @) = sF(s) — f(0) = s s twi
[ } (s) — f(0) L

dt 24+ w? 824 W




Part b:

The derivative of f(t) = e™?' with respect to time is

dle™?!]

= _9 —2t
dt ‘
and the Laplace transform of this derivative is
1 —2
£ _2 —2t - _ — .
=27 s+2 s+2

The time-derivative property of the Laplace transform says

d
e[ T0] = s - s0)
and for f(t) = e™*, the Laplace transform F(s) = =5, so
d 1
L {%} =sF(s) — f(0) =55 — e = S—T—Z —1

r aF@)] s s+2
dt s+2 s+2
3—5—2_ -2

s+2  s+4+2




Part c:

The derivative of f(t) = ¢> with respect to time is

and the Laplace transform of this derivative is

21
ci3) =3 =32 = 8

s3 83

The time-derivative property of the Laplace transform says

e[ T2] = sr ) - s

and for f(t) =13, the Laplace transform F(s) = 2, so

L {dfd—f)] :sj—i—(oﬁz LN



Problem 5

Integrate each of the following functions over time from 0 to ¢, then
find the unilateral Laplace transform of the resulting function and
compare it to the result of using the time-integration property of the
Laplace transform on the original function:

a) f(t) = sin (wqt)
b) f(t) = 2%
c) f(t) =3t



Hint 1a: The integral of f(t) = sin (wyt) over time is

/0 sin (wit) = —i[cos (wit) —1].

w1



Hint 2a: The Laplace transform of the first term in the integral
shown in the previous hint is
1 S

1 1
ﬁ[_;l cos (wit)] = —W—IL[COS (wit)] = T 24w



Hint 3a: The Laplace transform of the second term in the integral
shown in Hint la is



Hint 4a: To compare the result of this approach to the result of
using the time-integration property of the Laplace transform, start
by writing that property as

L Uotf(t)dt} - Fis)

in which F(s) is the Laplace transform of f(¢).




Hint 5a: For f(t) = sin (wit), the Laplace transform is F'(s) = %%

24w’



Hint 1b: The integral of f(t) = 2% over time is

[ee—@(5) ) = -,



Hint 2b: The Laplace transform of the function shown in the previ-
ous hint is

F(s) = c[% (¢ —1)] = % (L[ - £[1)) = % (8 ! -~ 1) |

S



Hint 3b: In this case, the time-integration property of the Laplace
transform looks like this:

t F(s) 275 2
6t _ _ Ts—6 __
E{/OQG dt}— P _8(8—6)‘




Hint 1c: The integral of f(t) = 3t* over time is

/Ot 3t° = (3) (%) 3 =1



Hint 2c: The Laplace transform of the function shown in the previous
hint is 31 6
Lt == =

st st



Hint 3c: In this case, the time-integration property of the Laplace

transform is: . ”
F 3%
L[/ 3152} :ﬁ:ﬁ:%_
0 s s s



Full Solution:
Part a:

The integral of f(¢) = sin (wyt) over time is

/0 sin (wit) = —i[cos (wit) — 1]

w1
and the Laplace transform of the first term of this integral is

1 1 1 5
ﬁ[—w—l COSs (U)lt)] = —w—lﬁ[COS (wlt)] = —w—lm
The Laplace transform of the second term of this integral is
1 1 11
LI—(-1)]=——L]-1]=—-.
o Ol ==L = o

Adding these two terms together gives

1 s 11 111 s
) = st s T o s 2|
w1 §* + wj w1 8 w1 s st wy
or
F(s) 1 52 + w? 52 1 [s*+w? — s
S) = — —_ = — |- —
wi |s(s2+w?)  s(s?+w?) wr | s(s?+w?)

1 w? _ w1
Cowr [s(s2Hwd)] s(s?+w?)



To compare this to the result of using the time-integration property
of the Laplace transform, start by writing that property as

el [ rwa] = &
0]

S

in which F'(s) is the Laplace transform of f(¢).

For f(t) = sin (wit), the Laplace transform F(s) = 5%, so in this
1

case the time-integration property says

w1

F(s)=L Uot sin (wlt)dt} = Ff:”) _ P W

s s(s? +w?)




Part b:

The integral of f(t) = 2% over time is

/O "ot — (2) (%) (e = ) = £ (¥ = 1)

and the Laplace transform of this function is

S 1) = 5 (L] - £1]) = 5 (8 - 1)

S

Fls) = % (5(55—6) B s(Ss_—66)> - % (s(s6—6)) - 5(82— 6)

In this case, the time-integration property of the Laplace transform
looks like this:

t o1
L |i/ 266tdt:| — F(S) _ “s=6 __ 2
0 s s s(s —6)

or

since the Laplace transform of 2¢% is 2.



Part c:

The integral of f(t) = 3t* over time is

/Ot?,t? = (3) (%) t3 =43

and the Laplace transform of this function is

|
o= 2= O

st st

In this case, the time-integration property of the Laplace transform

is:
t 32_'

£[/ 3t2]—F(8)— 33:%

0 s s s

since the Laplace transform of 32 is 382—;




Problem 6

Use the linearity property and the multiplication and division by ¢
properties of the unilateral Laplace transform to find F(s) for

a) f(t) = t*sin (4t) — t cos (3t)

b) f(t) — sin (wlt) + 1—et

t t

c) f(t) = tcosh (—t) — 222,



Hint la: Since both terms in the function f(t) = ¢ sin (4t) —t cos (3t)
contain a multiplicative factor of t", the Laplace transform property
relating multiplication by ¢" in the time domain to differentiation in
the s domain can be employed. That relation is

LAd"F(s)
dsm

LIE"f(1)] = (1)



Hint 2a: For the first term, the Laplace transform of sin(4t) is

4
52416’

F(s) =

and the multiplicative factor of t" is t2, so n = 2, which means you’ll
need the second derivative of F(s) with respect to s.



Hint 3a: The first derivative is

2L) _ LI _ 4(2416)2(~1)(25) = —8s(s2+16) 2




Hint 4a: The product rule gives the second derivative as

d?F(s) _ d[(—8s)(s* +16)7?]
ds? ds
= —8(s% + 16) 72 — 8s(s? + 16) 3 (—2)(2s)
8 3252
162 (21 16)°




Hint 5a: For the second term of f(t), the Laplace transform of cos(3t)
s

is
Fls) = ——
(5) 5249’

and the multiplicative factor of ¢ is t!, so n = 1, which means you’ll
need only the first derivative of F'(s) for this term.



Hint 6a: The first derivative is

dF(s) _ d(s)(s* +9)7] _ 1(32 + 9)—1 + 5(52 + 9)_2(—1)(28)

ds ds
= (2 +9) 7 —25%(s* +9)72




Hint 1b: Both terms in the function f(t) = M—I—l%ﬁ are divided
by t to the first power, and the divide-by-t property of the Laplace

transform tells you that

c {@} - / " Flu)du

in which u is an alternative generalized-frequency variable and F'(u)
is the Laplace transform of f(t).



Hint 2b: For f(¢) = sin (wit), the Laplace transform is

Wi
u? + wi’

F(u) =



Hint 3b: For the second term of f(t), the Laplace transform of 1—e™*
is

F(s)= 1]~ [e7) = 1 - — =
I(s+1) s 1

s(s+1) s+1 :s(s+1)'




Hint 4b: The integral of the function shown in the previous hint
(again using the alternate generalized-frequency variable u) is

o T 1
/ F(u)du = lim | ———du =
] o0 Jo u(u+1)

u—l—}s

1
:O—ln[ 5 }:ln{s—i_l].
s+1 S

= lim ln{

T—00

zln(l)—ln{ i }

s+1




Hint lc: The first term in the function f(¢) = tcosh (—t) — %
contains a multiplicative factor of ¢, so the Laplace transform prop-
erty relating multiplication by t" in the time domain to differenti-
ation in the s domain can be employed. The Laplace transform of
cosh (—t) is

F(s) = L[cosh (—t)] = L[cosh (t)] = pomy



Hint 2c: In this case the derivative property with n = 1 says

S d| =
ciep) = (1 E@ 4zl

ds ds
_ 1 252
2 —1 0 (s2—1)2
252 1 (82_1) 241

(s2—1)2 _82—1(32—1) o (52—1)2'




Hint 3c: The second term in f(¢) includes a factor of ¢ in the de-
nominator, so the divide-by-t property of the Laplace transform can
be employed. The Laplace transform of sinh (2t) is

L[sinh (2t)] =

s2—4



Hint 4c: The integral of the function shown in the previous hint is
> : T2 ) 1 u—2
/S F(u)du = Th_)ngo v 4)du = 271520 (5) In [u n 2}
S p—

—9 {mu) Cn (HEH

:0—2111[3_2} :21n{8+2}.
s+ 2 s — 2

T

S




Full Solution:
Part a:

Since both terms in the function f(¢) = ¢*sin (4t) —t cos (3t) contain
a multiplicative factor of ¢, the Laplace transform property relating
multiplication by t" in the time domain to differentiation in the s
domain can be employed. That relation is

nd"F(s)

£ f)] = (-1

For the first term, the Laplace transform of sin(4t) is

4
F(s) = ——,
() s2+ 16
and the multiplicative factor of " is t?, so n = 2, which means
you'll need the second derivative of F'(s) with respect to s. The first
derivative is

dFdiS) _ d[(4)(82d;|_ 16)*1] _ 4(82+16)_2(—1)(28) _ —88(82+16)_2




and the product rule gives the second derivative as

EF(s)  d|(—8s)(s? + 16)7]

ds? ds
= —8(s* +16) 7% — 8s(s* + 16) " (—2)(2s)
8 n 3252
(s2+16)2 ' (s2+16)3

For the second term of f(t), the Laplace transform of cos(3t) is
s
Fls) = —>—
(5) =5y

and the multiplicative factor of " is ¢!, so n = 1, which means
you'll need only the first derivative of F(s) for this term. That first
derivative is

dF(s) _ dl(s)(s* +9)7] =1(s+9)7" + 5(s> +9)72(—1)(2s)

ds ds
Hence
- - e 8 3252
L[t*sin (4) — t cos (3t)] = (1) { (24162 T (21 16)3

1 252 }



Part b:
Both terms in the function f(t) = SiH(tww) + 1_54 are divided by

t to the first power, and the divide-by-t property of the Laplace
transform tells you that

2] - [ roa

in which u is an alternative generalized-frequency variable and F'(u)
is the Laplace transform of f(t).

For f(t) = sin (wt), the Laplace transform is

w1

and

/ F(u)du = / %du = 1 tan! (ﬂ)
s s USt+wi w1 w1
T



For the second term of f(t), the Laplace transform of 1 —e™* is

F(s) = £01] — [e7) = 1 - — =
I(s+1) s 1

s(s+1) s+1 :s(s—i—l)'

and the integral of this function (again using the alternate generalized-
frequency variable u) is

o) ' T 1
/S Flujdu =T ey de =

“4’}5

1
1
:0—ln[ i }zln[s—i_ ]
s+1 S
Hence

pnlt) 1=y 1 (i) +1In [S i 1}

t t S

T

= lim ln{

T—00

zln(l)—ln{ i }

s+1




Part c:

The first term in the function f(t) = ¢ cosh (—t) — M contains a
multiplicative factor of ¢, so the Laplace transform property relating
multiplication by ¢" in the time domain to differentiation in the s
domain can be employed. The Laplace transform of cosh (—t) is

S

F(s) = L[cosh (—t)] = L[cosh (t)] = pom

and in this case the derivative property with n = 1 says

S d| =
citfo) = (e _ 4]

ds ds
_ 1 252
s2—1 (s2—-1)2
252 1 (s2—1) s+ 1

(s2—1)2 s2—1(s2—1) (s2—1)

The second term in f(¢) includes a factor of ¢ in the denominator, so
the divide-by-t property of the Laplace transform can be employed.
The Laplace transform of sinh (2¢) is

L[sinh (2t)] =

52 —4



and the integral of this function is
> : T2 ) 1 u—2
/S F(u)du = Th_)rgo v 4)du = 271520 (5) In [u n 2}
S p—

—9 {mu) Cn (HEH

:0—2111[3_2} :21n{8+2}.
s+ 2 s — 2

- sinht(2t)] _ (5322_+11)2 [s + 2} |

T

S

Hence

F(s) = L[t cosh (—t)



Problem 7

Find the unilateral Laplace transform for the periodic triangular
function f(t) =t for 0 <t < 1secand f(t) =2—tforl <t <2
sec, if the period of this function is 4 seconds.



Hint 1: For a periodic time-domain function f(t) with period 7', Eq.
3.23 in Section 3.7 of the text tells you that the Laplace transform
1S

F(5) = LU0 = T [ F0e " ar



Hint 2: In this case the expression shown in the previous hint is

1 ! —st ? —st

1 1 2 2
= / te stdt + / 2 Stdt — / te stdt| .
1—e s | /o 1 1



Hint 3: Two of these integrals can be evaluated with the help of the

relation
/ a e ( 1)
zedr = — 2z — - ].
a a



Hint 4: Applying the relation shown in the previous hint to the first
and third integrals in the expression for F'(s) gives

F(s) = 1 _1643 { {e__: (t B —LSH
2




Full Solution:

For a periodic time-domain function f(t) with period 7', Eq. 3.23 in
Section 3.7 of the text tells you that the Laplace transform is

F(9) = LU0 = {—r [ S0 at

which in this case gives

1 ! —st ? —st

1 1 2 2
= / te Stdt + / 2e St — / te stdt| .
L—e™ | Jo 1 1

Two of these integrals can be evaluated with the help of the relation

axr 1
/xe“xdx - (x — —) .
a a

Applying this to the first and third integrals in the expression for



Fs) =1 —16_45 {[e—s

or

e’ 1
52 52
2 —5

+-e "+
s

e




Gathering terms gives

Fls) = —— [% (1—2e7+ e?s)}

1 — 6—45 S

_ 1 1—e*)\?
_1—6_43 S ’




Problem 8

Find the convolution of the causal functions f(t) = 3e' and g(t) =
2¢" and show that

LIfg(t)] = F(s)G(s)

in which F(s) = L[f(t)] and G(s) = L[g(t)], in accordance with Eq.
3.25.



Hint 1: The convolution integral for two the causal functions is

/ (gt - 7)dr



Hint 2: For the functions f(t) = 3e* and ¢(t) = 2e~* the convolution

integral is
T=t

(f*xg)t) = / 3e72e~ "7 dr,

7=0



Hint 3: Performing the integration shown in the previous hint gives
(f*g)(t) = 3e! —3e~" (see the Full Solution if you need help getting
this result), and the Laplace transform of (f * g)(t) is

Llf*gt)] = L[3e" —3e™" = 3L[e'] — 3L[e].



Hint 4: The Laplace transforms of the two terms shown in the pre-
vious hint are

and




Hint 5: To show that

and




Full Solution:

The convolution integral for two the causal functions is

T=

(fxg)(t) = f(r)g(t —7)dr

=0

so for the functions f(t) = 3e' and g(t) = 2e~* this is

(fxg)t) = /Tt 3e"2e” " dr

=0
or

T=t

") dr = 6€_t/ X dr

7=0

T=t

Feaw=o/
= Ge ' (%) e’ = 37" (e — %) =37 (e* — 1)

=3¢ te? — 37! = 3¢t — 37,

t

So in this case the Laplace transform of the convolution (f * g)(t) is
Lf*g(t)] = L[3e" —3e~"] = 3L[e'] — 3L[e"]

and the Laplace transforms of these two terms are




and

I |
Lle ]_5—1—1
Lf #g(t) =3—— 32 3(s +1) 3(s — 1)

s—1 “s+1 (s—1(s+1) (s+D)(s—1)
_3s+3-3s+3 6
o (s+)(s—1) 21

To show that
LIf+g(t)] = F(s)G(s)
in which F(s) = L[f(t)] and G(s) = L[g(t)], note that

F(s) = £[3¢] = - & 1
and 5
Gl) = L) = 2

SO

F(s)t(s) = L:} LiJ N 326—1

in accordance with the Laplace convolution property (Eq. 3.25).



Problem 9

Find the unilateral Laplace transform for the time-domain function
f(t) =5—2t+ 3sin (4t)e~? and show that the initial-value theorem
(Eq. 3.29) holds in this case.



Hint 1: To find the Laplace transform of the time-domain function
f(t) = 5— 2t + 3sin (4t)e~%, start by using the linearity property to
separate the terms:

F(s) = L[5 — 2t + 3sin (4t)e™ %]

= L[5] + L][—2t] + L[3sin (4t)e"*]
= 5L[1] — 2L[t] + 3L][sin (4¢)e™*"].



Hint 2: For the first term, use the result shown in Section 2.1 for
the Laplace transform of a constant function f(t) = ¢



Hint 3: For the second term, use the result shown in Section 2.4 for
the Laplace transform of a ¢ functions:

n!
Sn+1 :

F(s) = L[t"] =




Hint 4: For the third term, use the result shown in Section 2.3 for
the Laplace transform of sinusoidal functions:

Wi
s? + wi

F(s) = L[sin (wit)] =

and the result shown in Section 3.2 for multiplication of a time-
domain function f(¢) by an exponential e:

F(s) = L[e"f(t)] = F(s — a).



Hint 5: The initial-value theorem says

lim [f(¢)] = lim [sF(s)].

t—0t 5—»00



Hint 6: Taking the limit of f(¢) as ¢t — 0 gives

lim [5 — 2t 4 3sin (4t)e 2] = 5 — 2(0) + 3 sin (4)(0))e 2" = 5.

t—0t

Compare this to the limit of sF'(s) as s — oo (see Full Solution for
this problem if you need help with this).



Full Solution:

To find the Laplace transform of the time-domain function f(t) =
5—2t+3sin (4t)e~2! start by using the linearity property to separate
the terms:
F(s) = L[5 — 2t + 3sin (4t)e” ]

= L[5] + L][—2t] + L[3sin (4t)e~*']

= 5L[1] — 2L[t] + 3L[sin (4¢)e™*].
For the first term, use the result shown in Section 2.1 for the Laplace
transform of a constant function f(t) = ¢

so for this term L5
F(s) = 1] =5-=—.
(s) = 5L][1] 53 .

For the second term, use the result shown in Section 2.4 for the
Laplace transform of a ¢" functions:

F(s) = LII"] = =7
which in this case gives

F(s)= —2L[t] = —2—— = =,



Finally, for the third term, use the result shown in Section 2.3 for
the Laplace transform of sinusoidal functions:

Wi
s? + wi

F(s) = L[sin (wit)] =

and the result shown in Section 3.2 for multiplication of a time-
domain function f(¢) by an exponential e:

F(s) = Lle"f(t)] = F(s — a)
so in this case, with w; = 4 and a = —2, the Laplace transform of
the third term is
4 12

F(s) = 3L]sin (4t)e” ] = 3(8 PR = e

Putting the three terms together gives

12

2
F(s) = fracss — = + — 2
(s) = frachs s2+(s+2)2+16



The initial-value theorem says

lim [f(¢)] = lim [sF(s)]

t—0t 5§—00

and taking the limit of f(t) as ¢t — 0 gives

lim [5 — 2t + 3sin (4t)e 2] = 5 — 2(0) + 3sin (4)(0))e 2 = 5

t—0t

while the limit of sF'(s) as s — oo is

lim [s——s——1—31—2] = lim [5—2+ 125 ]
sso0 s s? (s4+2)2+16" s> s s24+4s+4+16
i 22
s—00 s 5—1—4—1—25—0

in accordance with the initial-value theorem.



Problem 10

Find the unilateral Laplace transform for the time-domain function
f(t) = 4t?e3t — 3 + e~ cosh (2t) and show that the final-value the-
orem (Eq. 3.30) holds in this case.



Hint 1: To find the Laplace transform of the time-domain function
f(t) = 4t2e73 —3+e "t cosh (2t), start by using the linearity property
to separate the terms:

F(s) = L[4t%e™" — 3 + e " cosh (2t)]

= L[4t*e 3] + L][-3] + L[e " cosh (2t)]
= 4L[t*e %) — L[3] + L[e " cosh (2)].



Hint 2: For the first term, use the result shown in Section 2.4 for
the Laplace transform of a ¢ functions:

n!
Sn+1 )

F(s) = L[t"] =

and the result shown in Section 3.2 for multiplication of a time-
domain function f(¢) by an exponential e:

F(s) = L[e" ()] = F(s — a)



Hint 3: For the second term, use the result shown in Section 2.1 for
the Laplace transform of a constant function f(t) = ¢



Hint 4: For the third term, use the result shown in Section 2.5 for
the Laplace transform of hyperbolic sinusoidal functions:

F(s) = Lfcosh (at)] = —

s2 — g2

and the result shown in Section 3.2 for multiplication of a time-
domain function f(¢) by an exponential e™:

F(s) = Le"f(t)] = F(s — a)



Hint 5: The final-value theorem says

lim[sF(s)] = lim [f(¢)].

s—0 t—00



Hint 6: Taking the limit of sF'(s) as s — 0 gives

lim| " -3 n s+1 ]
im([s S— + S5
s=0° (s+ 3)3 s (s+1)2—4
8s —3s s(s+1)
=1i
sli%[(s+3)3 T (s+1)2 —4]
—0-3+0=-3.

Compare this result to the limit of f(¢) as t — oo (see the Full
Solution for this problem if you need help).



Full Solution:

To find the Laplace transform of the time-domain function f(t) =
4t%e73" — 3 + e~ cosh (2t), start by using the linearity property to
separate the terms:

F(s) = L[4t*e" — 3+ e " cosh (2t)]
= L[4t*e™) + L]-3] + L[e " cosh (2t)]
= 4L[t*e 3] — L[3] + L[e " cosh (2t)].
For the first term, use the result shown in Section 2.4 for the Laplace

transform of a ¢ functions:

n!
Sn+1 )

F(s)=L[t"] =

and the result shown in Section 3.2 for multiplication of a time-
domain function f(t) by an exponential e*:

F(s) = L[e" ()] = F(s — a)
which can be applied to this term with n =2 and a = —3:

o s 2! 8
F(s) =4L[t"e ]74(5—1—3)2“7(5—1—3)3'




For the second term, use the result shown in Section 2.1 for the
Laplace transform of a constant function f(t) = ¢

SO fOI" thlS teI"IIl

Finally, for the third term, use the result shown in Section 2.5 for
the Laplace transform of hyperbolic sinusoidal functions:
s

F(s) = L|cosh (at)] =

52

— a2
and the result shown in Section 3.2 for multiplication of a time-
domain function f(¢) by an exponential e:
F(s) = L[e"f(t)] = F(s — a)
so in this case, with a = 2 in the cosh term and a = —1 in the
exponential term, the Laplace transform of the third term is
s+1 s+1
F(s) = Lle "cosh (2t)] = = .
(S) [6 CO8 ( )] (S + 1)2 _ 22 (S + 1)2 _ 4
Putting the three terms together gives
8 -3 s+1
F(s) = —_—t
(s) (5—1—3)3jL s +(s+1)2—4




The final-value theorem says

lim[sF(s)] = Uim [f(t)]

s—0 t—o00

and taking the limit of sF'(s) as s — 0 gives

lim| n -3 n s+ 1 ]
im[s §— +5——5—
s=0 (s + 3)3 s (s+1)2—-4
_ 8s —3s s(s+1)
=1
sl—I>I(1)[(S—|—3)3 T (s+1)2 —4]
—0-3+0=-3

while the limit of f(t) as t — oo is

lim [4t%¢ ™" — 34+ e "cosh (2t)] =0 -3+ 0 = —3

t—o00

in accordance with the final-value theorem.






Chapter 4

Applications Solutions

Problem 1

Use partial fractions to decompose the s-domain function F'(s) in
Eq. 4.10 into the five terms shown in Eq. 4.11.



Hint 1: Since the highest power of s in the first factor in the denom-
inator of F(s) is four and the highest power of s in the second factor
in the denominator is one, write the partial-fraction expansion of
F(s) like this:

P2 _A B C D E
8_54(3—1—1)_34 $3 s s s+1



Hint 2: Multiply each term in the equation shown in the previous
hint by s*(s + 1).



Hint 3: Note that after multiplying each term by s*(s + 1) the re-
sulting equation must hold for each power of s:

2=A(s+ 1)+ Bs(s+ 1) + Cs*(s + 1) + Ds*(s + 1) + Es*
= As+ A+ Bs* + Bs + Cs* + Cs* + Ds* + Ds® + Es*
=A+s(A+B)+s*(B+C)+s*(C+D)+s'(D+E).



Hint 4: Equating the coefficients of each power of s gives

A=2
A+B=0 — B=-A=-2
B+C=0 —» C=-B=
C+D=0 - D=-C=-2
D+E=0 — E=-D=2



Full Solution:

Since the highest power of s in the first factor in the denominator of
F(s) is four and the highest power of s in the second factor in the
denominator is one, the partial-fraction expansion of F'(s) looks like
this:

2 A B C D E

Fls)=—2 2,52, 2 Y _
(s) st(s+1) 54+33+ +s+s+1

Multiplying each term in this equation by s*(s + 1) gives
2=A(s+1)+ Bs(s+ 1)+ Cs*(s+ 1) + Ds*(s + 1) + Es*
= As+ A+ Bs?> 4+ Bs + Cs®* + Cs* + Ds* + Ds® + Es*
=A+s(A+B)+s*(B+C)+s*(C+D)+sD+E),

and since this equation must hold for each power of s, this means

A=2
A+B=0 - B=—-A=-2
B+(C=0 —- C=-B=2
C+D=0 — D=-C=-2
D+E=0 — E=-D=



Inserting these values into the expression for F'(s) gives

F(s) 2 2+—2+2+—2+ 2
S) =m——7- = — —_— J— _
sts+1) st 2 2 s s+1

in accordance with Eq. 4.11.



Problem 2

Use the Laplace transform and the inverse Laplace transform to solve
the differential equation

f(t) | df(t)
az T

—2f(t) = 5e™"

with initial conditions f(0) = —3 and dfd—(tﬂh:o =4.



Hint 1: Start by taking the Laplace transform of both sides of the

equation
¢fE) L df(@)
4
dt? + dt

—2f(t) =b5e"



Hint 2: The first two terms on the left side of the equation

*f(t)  df(t)
az T

c —2f(t)| = £[pe]

can be analyzed using the time-derivative property of the Laplace
transform.



Hint 3: For first derivatives the time-derivative property is given by
Eq. 3.12 in the text, which in this case is
df (t _
e T — ssp(s) - 0]
in which F'(s) is the Laplace transform of f(¢). For second deriva-
tives, the time-derivative property is given by Eq. 3.13, which says

d*f(t) 9 o df(t)
e | =s"F(s) —sf(0 )—7

]

t=0—



Hint 4: For the third term on the left side of the equation, the
Laplace transform is

L2f()] = 2L[f ()] = 2F (s),

and for the term on the right side of the equation, the Laplace trans-

form is
1

—t1
L[5e ]_53—1—1'




Hint 5: Inserting the expressions from the previous hints and apply-
ing the initial conditions, then solving for F(s) gives

35 +11s+3
(s+1)(s2+4s —2)

F(s)=—

(if you need help getting this result, you can see the details in the
Full Solution for this problem).



Hint 6: Partial fractions can be used to put this expression for F(s)
into a form with recognizable inverse Laplace transform. To do that,
start by writing F'(s) as

352+ 11s+3 As+ B C
F(s)=— = + :
(s+1)(s2+4s—2) s2+4s—2 s+1




Hint 7: Solving for the partial-fraction coefficients (details in the
Full Solution) makes F'(s) look like this:

—2s—5 n -1
s2445—2 s+1°

F(s) =

Now complete the square in the denominator of the first term and
write the —6 term as —(v/6)2. This gives

—2s—5 —25s—5

2+ds—2  (s+2)2— (V6)?
—2s -5

(512~ (o) (s+2)— (Vo

SO
—2s ) -1

I P R P A




Hint 8 Now compare the first term of this expression to the s-
domain function that is the Laplace transform of the hyperbolic
cosine function (Eq. 2.30 in Section 2.5).



Hint 9: Recall from the discussion in Section 3.2 of the text that
the frequency-shift property of the Laplace transform (Eq. 3.6) says
that

Lle" f(t)] = F(s — a)
which means that

s+2

—2
E[G tcoshat] = m



Hint 10: Use the Laplace transform of the hyperbolic sine function
(Eq. 2.33 in Section 2.5) and apply the frequency-shift property to

get
V6
(s-+ 22~ (VB)*

L[e* sinh V6] =



Hint 11: Multiply the second term in F(s) by v/6/v/6:

S £ W Y.
(s+22— (V62 \V6)  V6(s+2)—(/6)

which makes F(s)

_ s+2 1 V6 -1
Fls) = 2(3—{—2)2—(\/6)2 \/6(s+2)2—(\/6)2+8+1'




Hint 12: Note that the third term in F(s) is the Laplace transform
of the time-domain exponential function:

1

Lle™ = s+1’

SO

L s+ 2 _i V6 -1
T e VG2 - (Vop e

— _2L[e cosh v/6t] — %/J[e% sinh V6t — Lfe ]

and taking the inverse Laplace transform of both sides of this equa-
tion gives f(t).




Full Solution:

Taking the Laplace transform of both sides of the equation
df(t) , dft)

e +4 T —2f(t) = 5e”"
gives ,
d*f(t) , df(t) T
L I +4 0 —2f(t)| = L[5e™"]

The first two terms on the left side of this equation can be analyzed
using the time-derivative property of the Laplace transform. For
first derivatives that property is given by Eq. 3.12 in the text, which
in this case is

df(t)

AL[% ) = 4[sF(s5) — £(07)

in which F'(s) is the Laplace transform of f(¢). For second deriva-
tives, the time-derivative property is given by Eq. 3.13, which says

gy eps) - a0y - T

t=0—

For the third term on the left side of the equation, the Laplace
transform is

L2f(8)] = 2L[f(t)] = 2F(s),



and for the term on the right side of the equation, the Laplace trans-
form is

1
—t1
L[5e™"] = 55 1
Inserting these expressions gives
-y df(@) - 1
2 —_ _— — — =
sF(s) = sf(07) = = . +4sF(s) = J(07)] = 2F(s) =5—

and applying the initial conditions f(0) = —3 and dfd—(f)|t=o = 4 makes
this

5 (—3s—8)(s+1)
(s)(s*+4s —2) P s—|—1+ ]
_ —3s*—11s—3
B s+1 '
Solving for F'(s) gives
35 +11s+ 3

F(s)=—

(s+1)(s2+4s—2)

Partial fractions can be used to put this expression for F'(s) into a
form with recognizable inverse Laplace transform. To do that, start
by writing F'(s) as

35+ 11s+ 3 As+ B C

F = — p—
e P Py sl pray P e




Multiplying both sides of this equation by (s + 1)(s* + 4s — 2) gives
—(35*+115+3) = (As+B)(s+1)+C(s*+45—2) = As*+As+Bs+B+(
and gathering powers of s makes this

s (-3—-A—-C)—s(11—A—B—4C)+(B—-20+3)=0
which means

A+C=-3 » A=-3-C
A+B+4C=-11 — B=—-11—A—4C
B-20=-3 — B=2C-3

Inserting the expression for A from the first equation into the middle
equation gives

B=-11-A-4C=-11-(-3-C)—-4C — B=-8-3C
and inserting this expression for B into the bottom equation gives
B=-8-3C=20-3 — —-5C=5

which means C' = —1. Hence B = —-8—-3C = —5and A = -3-C =
—2. That makes F'(s) look like this:

—2s—5 -1
F = .
(s) 82+4S—2+8+1




Now complete the square in the denominator of the first term:

—25—5H B —25—5H B —25—5H
$24+4s—2 2445s—2 $2+45+2—6
B —25s—H
C(s+2)2-6

and then write the —6 term as —(1/6)2. Thus

—2s—5 —25—5
s24+4s—2 (s+2)2—(\/6)2
—2s n —9
(s+22—(VBP  (s+2)° — (Vo

SO
—2s -5 —1

5) = + +
S P Y A P T e
Now compare the first term of this expression to the s-domain func-

tion that is the Laplace transform of the hyperbolic cosine function
(Eq. 2.30 in Section 2.5):

S

L[coshat] = et

Comparing this expression to the first term of F(s) shown above,
it’s clear there are some similarities as well as some differences in



the denominator and in the numerator. One difference is that the
denominator of the Laplace transform of the hyperbolic cosine func-
tion contains an s? term rather than an (s + 2)? term. But recall
from the discussion in Section 3.2 of the text that the frequency-shift
property of the Laplace transform (Eq. 3.6) says that

Ll f(t)] = F(s — a)

which means that

—2t _ 5+ 2
E[@ COSh at] = m
and setting a = /6 makes this
s+ 2

Lle " cosh V6t] = )
[ t] TR

This expression closely resembles the first term of F'(s) shown above,

but the numerator is s + 2 rather than s. To remedy this difference,
consider the second term of F(s), which may be written as
=5 B —4 -1
(2P - (0P (+2P-(VOF  (s+2F— (VoF
Writing the second term in this form makes F'(s) look like this:
—2s —4 -1 -1

12— (Vo (s 42f— (VO (5122 (Vo) sl

F(s) =




and combining the first and second terms of this expression gives

F(s) = —2s5—4 n —1 N -1
TGEDE (VR Gr2P- (Vop st
s+ 2 -1 —1

G127— (Vo (5422 (Vo) st1

Now the first term has the exact form of the Laplace transform of the
function e~ cosh v/6t shown above, multiplied by a constant factor
of —2. As for the second term, recall the Laplace transform of the
hyperbolic sine function (Eq. 2.33 in Section 2.5):

a

L[sinh at] =

s2 — 2

which means that

Ve
" (Vo

and applying the frequency-shift property makes this

V6
(s +2)2 = (V6)*

Now consider the result of multiplying the second term in F(s) by

L]sinh v/61]

L[e* sinh V6] =



V6//6:

—1 Ve 1 V6
(s +2)* = (V6)” -

which makes F(s)

L s+ 2 _i V6 -1
R PR ER Y Y PR G EPE Y

The final step to finding f(t) is to recognize that the third term
in F(s) is the Laplace transform of the time-domain exponential
function:

Lle™] = s jlt 1’
L s+ 2 _ i V6 -1
T e VRG o - (Vop s
—2t 1 —2t —t
= —2L[e"* cosh \/ét] — %L[e sinh \/at] — Lle™]
and

1
) = —2¢ 2 cosh V6t — ——e 2 sinh V6t — e .
) N



Problem 3

Here’s a differential equation with non-constant coefficients:

f(t) | df(t)
Tar T

+f(t) =0,

Find f(¢) using the Laplace transform and the inverse Laplace trans-
form if the initial conditions are f(0) = 0 and #d—g)h:o =2.



Hint 1: Start by taking the Laplace transform of both sides of the
differential equation:

Bt A

t
£ dt? dt

+f()] = L[0]

and use the linearity property of the Laplace transform.



Hint 2: The first term on the left side of the equation

g[[de”]u[ f”]+£[f<>] 0

dt?

can be analyzed using the multiplication-by-t property of the Laplace
transform (Eq. 3.19 in Section 3.6) and applying the time-derivative
property for the second derlvatlve Also note that the initial condi-
tions are f(0) = 0 and df =0 = 2.



Hint 3: Apply the multiplication-by-t property of the Laplace trans-
form to the second term on the left side of the equation shown in
the previous hint and use the time-derivative property for the first
time derivative.



Hint 4: Note that the third term in the equation shown in Hint 2 is
just the Laplace transform of f(¢):

so the Laplace-transformed differential equation is

d ., d _
—£[8 F(s)] — £[SF(S)] + F(s) = 0.



Hint 5: Taking the derivatives in the previous hint gives

o dF(s) dF(s)

—2sF(s) — s s —F(s)—s 7 + F(s)=0
. dF(s) 2 R
ds (2 + S)F(S) T (s+ 1)F(8)'



Hint 6: Dividing both sides of the equation shown in the previous
hint by F'(s) and integrating both sides over s gives

/dﬁig) —InF(s)=—2In(s+1) +Inc=In {(8+—01)2}

in which ¢ represents the constant of integration (if you need help,
details can be found in the Full Solution).



Hint 7: Taking the inverse Laplace transform of F'(s) gives f(t):

= cte L.

The constant ¢ can be found using the initial condition that says

daf (t) _
t=0



Full Solution:

Start by taking the Laplace transform of both sides of the differential

equation: ,
d*f(t) | df(t) _
o +t o +f(t)1 = L[0]

and use the linearity property of the Laplace transform to make this

c {[tdzgﬂ] L C [tdf—(ﬂ + L] =0

dt
since £]0] = 0. The first term on the left side of this equation can
be analyzed using the multiplication-by-¢ property of the Laplace
transform (Eq. 3.19 in Section 3.6):

[0 drte) __d (st

el

ds ds

and applying the time-derivative property for the second derivative
makes this

L)) d [, oy df()
£ {t dt? } N _£ {S F(S) - Sf(o )_ dt t:0:|
d ., _doy
== —g[s F(s)—0-2] = —£[3 F(s)]



since the initial conditions are f(0) =0 and df =0 = 2.
Applying the multiplication-by-t property of the Laplace transform
to the second term on the left side of the equation shown above gives

o[ -2 o[ 1)

and the time-derivative property for the first time derivative makes
this

{ d,z;(t)] _ _%[sF(S) — f(07)]
= L fsF(s)

The third term in the equation shown above is just the Laplace
transform of f(¢):

LIFO)] = F(s),

so the Laplace-transformed differential equation is

d d B
P F(s)] = - [sF()] + F(s) = 0.

Taking the derivatives makes this

dF(s)
2
5 ds

dF(s)
ds

—2sF(s) — — F(s)—s +F(s)=0



or

dFd—iS)(s2 +5) = —2sF(s).
Hence dF(s) 5 )
ds (s2+ S)F(S) B _mF(S)

and dividing both sides of this equation by F'(s) gives

ds 2

F(s) (s+1)

Now integrate both sides over s:

R b oa A

Integrating gives

dF(S)_n S)=—4Z21In\(s nc=1in
/F(s)_lF() 210 (s +1) +1 1[

&)

in which ¢ represents the constant of integration, which can be de-

termined using the initial conditions. Thus




and taking the inverse Laplace transform of F(s) gives f(t):

= cte L.

The constant ¢ can be found using the initial condition that says

df (t — 9.
that LO| =2
t=0
df (t) _ d(cte™) _ [Ce—t _ cte_t} —©c
dt |, A P =0

soc=2and f(t) = 2te”".



Problem 4

Use the Laplace transform to convert the following partial differ-
ential equations into ordinary differential equations and solve those
equations:

a) _8]0((9&;,15) = —aféi’t) —+ f(l‘,t) with f(ﬁlf, 0) = 46_2$.

b) 8fé::,t) _ 8f(§i,t) with f(:E,O) = COS (bx)




Hint la: To convert the equation afg:’t) = af“) + f(x,t) with
f(z,0) = 4e7* into an ordinary differential equatlon start by tak-
ing the Laplace transform of both sides of the equation, and use the

linearity property of the Laplace transform.




Hint 2a: The time-derivative property of the Laplace transform can
be used to write the first term of the equation

c {%@] _y {%] + L[f (2, 1)].

as

ot

in which F(z,s) is the Laplace transform of the time-domain func-

tion f(z,t). Now use Eq. 4.20 to relate the Laplace transform of

Of (z,t) dF(z,s)
oz to de

c {af (“”’t)} — sF(z,5) — f(2,0)




Hint 3a: Once the original partial differential equation has been

converted into the ordinary differential equation
dF

C(ix’ S> + (1 - S)F(l’, S) = _f(xa 0) = _46_2:07

x

it can be solved by multiplying both sides of the equation by an
integrating factor designed to produce a multiplicative factor of 1 —
s (that is, the factor in front of F(z,s) when the derivative with
respect to x is taken). In this case, that integrating factor is

ef(l—s)da: _ e(l—s)fdx _ 6(1—s)x'

Now multiply both sides of the equation by this factor.



Hint 4a: The left side of the equation

dF
i@ s) + (1 —8)F(z,s)| 1797 = —4e2mel=9),
dz
is the derivative of the product F(x,s)e=%?, so
(1-s)z
d[F(SL’, S>€ ] _ _46—2906(1—5)&0 _ _46(—1—8)$.

dzx

Now integrate both sides of this equation over x.



Hint ba: Integrating the equation shown in the previous hint gives

1

(—1—s)z
—e¢ + ¢,
(=1—5)

F(z,s)e™® = —4

in which ¢ represents a constant of integration (details are provided
in the Full Solution for this problem). Now divide both sides of this
equation by e(!~*% and note that if the time-domain function f(z,t)
is bounded as x — oo, then its Laplace transform F'(z,s) must also
be bounded in this limit.



Hint 6a:

4 el=1=s) c 4

— + — —2z Ce(sfl)z.
1+ s el=s)z = ell=s)z i+ 7

F(z,s)

With the boundary condition given in the last hint indicating that
the constant ¢ = 0, the time-domain function f(x,t) can be found
by taking the inverse Laplace transform of F'(z,s):

Fot) = £ [F(x,5)] = £ [1 i Se-%] .



Hint 7a: To find the inverse Laplace transform of the expression for
F(s) given in the previous hint, note that 4¢7>* is a constant with
respect to the transformation process, so these factors move through
the £7! operator. Note also that the discussion of exponential time-
domain functions in Section 2.2 tells you that

1
s+1’

I I T
£ [s—i—l -

Lle ™ =

SO




Hint 1b: To convert the equation % gi’t) = afa(i’t) with f(z,0) =
cos (br) into an ordinary differential equation, start by taking the
Laplace transform of both sides of the equation, and as in Part a,

use the time-derivative property of the Laplace transform.




Hint 2b: The left side of the equation that results from the previous
hint can be written as

r {Gf(axt,t)

] = sF(z,5) — f(z,0)

in which F(z,s) is the Laplace transform of the time-domain func-
tion f(x,t). Using Eq. 4.20 to relate the Laplace transform of af o t)

to % leads to
XL

dF(z,s)

p sF(x,s) = —f(z,0) = — cos (bx)

(you can see the details in the Full Solution if you need help getting
this result).



Hint 3b: The ordinary differential equation shown in the previous
hint can be solved using the integrating factor

ef(—s)dw _ e(—s)fdx — 5%

9

so multiply both sides of the equation by this factor.



Hint 4b: The left side of the equation that results from the previous

—SsT

hint is the derivative of the product F(x,s)e **, so
d F —ST
dF(z,s)e™™] (x(,i;)e ] = —cos (br)e™™*

and integrating over x gives

/wdm = F(z,s)e™™" = —/cos (bx)e " dx

which you can integrate over x.



Hint 5b: The integral

/ WCM = F(z,s)e™*" = — / cos (b)e~*d

can be analyzed using the integral relation

0z @ €08 (bx) + bsin (bx)
a? + b?

/e‘”” cos (bx)dx = e



Hint 6b: Applying the integral relation shown in the previous hint
to this case gives
. —scos (bx) + bsin (bz)

F(z,s)e = —e* ST +c

in which ¢ represents a constant of integration. Dividing both sides
of this equation by e™** gives

—scos (bx) + bsin (bx) c
F(z,s) = — 2 + e
_ scos(bz)  bsin (bz)
2402 52 + b?

As in Part a, the constant ¢ must equal zero if F(z,s) and f(z,t)
are to remain bounded, and the time-domain function f(x,t) can be
found by taking the inverse Laplace transform of F(z, s).



Hint 7b: To find the inverse Laplace transform of the expression

st =e el = [SE -]

note that cos (bx) and sin (bx) are constants with respect to the
transformation process, so these factors move through the £-! oper-
ator. Note also that the discussion of sinusoidal time-domain func-
tions in Section 2.4 tells you that

L’[cos(bt)]:%w ,cl{ i 1:cos(bt)

L[sin (bt)] = 32—-be2 £ { b 1 = sin (bt).



Full Solution:
Part a:

To convert the equation 2200 = 2D £y ) with f(x,0) = de™2*
into an ordinary dlfferentlal equatlon start by taking the Laplace
transform of both sides of the equation:

c [afg’;’t)} —L Pfg;’ ‘) +f(a;,t)]

and using the linearity property of the Laplace transform makes this

c {Wéf; t)} c {%} + L (2,0)].

The time-derivative property of the Laplace transform can be used
to write the first term as

r {8]”5;,1&)

] = sF(x,s) — f(z,0)

in which F(z,s) is the Laplace transform of the time-domain func-

tion f(z,t). Also note that you can use Eq. 4.20 to relate the
8f(:1:t) to dF(:Es)

Laplace transform of Hence

dF(x,s)

sF(x,s) — f(x,0) = I

+ F(z,s)



or

dF(z,s)

dx

So the original partial differential equation has been converted into
this ordinary differential equation. One approach to solving this
equation is to multiply both sides of the equation by an integrating
factor designed to produce a multiplicative factor of 1 — s (that is,
the factor in front of F'(z,s) when the derivative with respect to z
is taken). In this case, that integrating factor is

+ (1 = 8)F(z,s) = —f(z,0) = —de ",

ef(lfs)dz _ e(lfs)fd:v _ 6(173):1:

and multiplying both sides of the equation by this factor produces

dF(z,s)

. + (1 —38)F(z,s)| 1797 = —4e2we-9),

But the left side of this equation is the derivative of the product
F(z,5)e=97 50
d[F(z,s)et=9)7]
dx
and integrating over x gives

/d[F(‘T7 8)6(1_8)$]dx _ _4/6(—1—5)acda7
dx

_46—2m€(1—s)ax _ _46(—1—5):8




or

1
F(x; 5)6(1_s)x = _4@6(—1—3):2 + ¢,

in which ¢ represents a constant of integration. Dividing both sides
1-s)z

of this equation by el gives
4 elml=s) c 4,
= — —Z4T (8—1)1
F(z,s) s clioe + R T o + ce )

But if the time-domain function f(z,t) is bounded as x — oo, then
its Laplace transform F(z,s) must also be bounded in this limit,
which means that the constant ¢ must equal zero. So in that case
the time-domain function f(x,t) can be found by taking the inverse
Laplace transform of F(z,s):

Ft) = £V F(z, )] = £ [1 i Se—%] |

To find the inverse Laplace transform of this expression, note that
4e72* is a constant with respect to the transformation process, so
these factors move through the £~ operator:

fz,t) =4e L7} [1 i s}



and the discussion of exponential time-domain functions in Section
2.2 tells you that

1
Lle™t =
] s+ 1’
SO
—1 1 _ ot
s+1
and
t:4—2a: —1_:4—2x—t'
flz,t) =4e =L L_{_J e “e

Once you have a solution for f(z,t), it’s always a good idea to check
that it satisfies the original differential equation as well as the initial
conditions.

In this case, the original differential equation is 2£@&t — 9fled) |

ot ox
f(x,1),
Of (x,t)  Ode et 0w

= = —4e” e

ot ot

and e
Of (x,t) _ Ode e gt

ox ox

Plugging these expressions into the original differential equation
gives

_46—2306—75 — _86—2z6—t + 46—2xe—t — _46—2;106—15



so f(z,t) = 4e7*®e~! is a solution to the equation.

To check that the initial condition f(z,0) = 4e~%* is satisfied, plug
t =0 into f(x,t):

f(2,0) = de 2" = 4=

in accordance with the initial condition.



Part b:

To convert the equation 2 gtc’t) = (,Si’t) with f(x,0) = cos (bx) into
an ordinary differential equation, start by taking the Laplace trans-

form of both sides of the equation:

e[ o]

As in Part a, use the time-derivative property of the Laplace trans-
form to write the left side of this equation as

r {Gf(axt,t)

] = sF(z,5) — f(z,0)

in which F(z,s) is the Laplace transform of the time-domain func-
tion f(z,t). Also use Eq. 4.20 to relate the Laplace transform of

afé(,i’t) to dpg,s)' In this case that gives

F(r.) — f(z,0) = T2
or
dF (z,s)
dz

The original partial differential equation has been converted into this
ordinary differential equation, and this equation can be solved using

—sF(z,s) = —f(x,0) = — cos (bz).



the integrating factor

ef(fs)dx _ e(fs)fdx .

Multiplying both sides of the equation by this factor produces

dF(x,s)

I + —sF(z,s)| e * = —cos (bx)e™*.

The left side of this equation is the derivative of the product F'(z, s)e™*

% d[F(z, s)e~]

dx

and integrating over x gives

/ de — Pz, s)e™™ = — / cos (br)e—* .

= —cos (bx)e™**

This integral can be analyzed using the integral relation

0z @ €08 (bx) + bsin (bx)
a? + b?

)

/e‘”” cos (bx)dx = e
which in this case gives

F(z,8)e = —e* —5cos (za;):bs sin (bx) e




in which ¢ represents a constant of integration. Dividing both sides
of this equation by e™* gives

—scos (bx) + bsin (bx) c
s2 + b2 e— ST
_ scos(br)  bsin (bx)

- ce
SrE | @i

F(z,s) = —

ST

As in Part a, the constant ¢ must equal zero if F(x,s) and f(x,t)
are to remain bounded, and the time-domain function f(z,t) can be
found by taking the inverse Laplace transform of F(z, s):

e e

To find the inverse Laplace transform of this expression, note that
cos (bx) and sin (bx) are constants with respect to the transformation
process, so these factors move through the £~ operator:

flat) = £ [ (bx) _ bsin <bw>}

PRI SRy 2

] — sin (bx)L! [ b ]

= cos (ba) L [

s + b 52+ b2

and the discussion of sinusoidal time-domain functions in Section 2.4



tells you that

s _ s
L][cos (bt)] = T L LQ " b2] = cos (bt)
: b - :
L[sin (bt)] = T Lt LZ n 62] = sin (bt)

and inserting these expressions for the inverse Laplace transform into
the equation for f(t) gives

f(z,t) = cos (bx) cos (bt) — sin (bx) sin (bt)
= cos (bx + bt) = cos [b(x + 1)].
Checking that this satisfies the original differential equation
Of(x,t)  Ocos bz +1)]

ok 5 = —bsin [b(z + t)]

and

Of (z,t) _ Dcos [b(z +t)]
Ox Ox

so f(z,t) = cos [b(z + t)] is a solution to the equation

= —bsin [b(z + t)]

Of (z,t) of (z,t)
ot

ox

To check that the initial condition f(z,0) = cos (bx) is satisfied, plug
t =0 into f(x,t):

f(x,0) = cos [b(z + 0)] = cos (bx)

in accordance with the initial condition.



Problem 5

Show that the expression for y(¢) in Eq. 4.54 is a solution to the
differential equation of motion for a mass hanging on a spring (Eq.
4.35) and satisfies the initial conditions y(0) = y4 and dy/dt = 0 at
time ¢ = 0.



Hint 1: To show that a function such as y(t) is a solution to a
differential equation, substitute that function into the equation. In
this case the function is

y(t) = yoe™* cos (wit) + (ﬁ) e~ " sin (wyt)
w1

and the differential equation is

d*y ca\ dy k
SV (Y (Z)y=o.
dt? * <m> dt * (m) Y



Hint 2: The first derivative of y(¢) with respect to time is

d
Y yo(—a)e™ ™ cos (wit) + yoe~ "w; [— sin (w;t)]

dt
+ (%) (—a)e™ " sin (wit) + (@) e "wy cos (wit)

w1 %]

in which the definitions ¢y/m = 2a and k/m = wj = w} + a® have
been used.



Hint 3: The second time-derivative of y(t) is

d2
d_tg = a’yoe~ ™ cos (wit) + wiayoe ™ sin (w;t)

+ wiayoe” ™ sin (wit) — wiyoe * cos (wit)

+ a® (%) e~ sin (wit) — aw, <%) e cos (wit)

w1 w1

— awq (%> e~ cos (wyt) — w} (%> e~ sin (wit)
w1

w1

(you can see more detail in the Full Solution for this problem).



Hint 4: Now multiply dy/dt by 2a and multiply y by w? + a?, and

show that the eight terms in ‘%’ add to the four terms in (2a)dy/dt

and the four terms in (w? + a?)y to give zero.



Hint 5: You may find it helpful to gather terms like this:

yoe " cos (wit)[a® — w? — 2a® + w? + a?]

+ yoe~ “ sin (wit)[wia + wia — 2wy a

+ 20 —at o (wit)[—wia — wia + 2wy al
w1
4 0 g—at gy (wit)[a® — wi — 2a* + w? + a?].

w1



Hint 6: To verify that the initial conditions are satisfied, set ¢ to
zero in the expressions for y(t) and %.



Full Solution:

To show that a function such as y(t) is a solution to a differential
equation, substitute that function into the equation. In this case the
function is

y(t) = yoe™ ™ cos (wit) + (%) e~ sin (w;t)
w1

and the differential equation is

Inserting the definitions c¢g/m = 2a and k/m = w2 = w? + a* and
taking the first derivative of y(t) with respect to time gives

dy
dt

at

= yo(—a)e " cos (wit) + yoe~ wi[— sin (wyt)]

n (%) (—a)e " sin (wyt) + (ﬁ) e~ "'w cos (wit)

w1 w1



and the second time-derivative is
d2y = —at —at :
az —ayo(—a)e”* cos (wit) + yo(—a)e™ ™ (—wr) sin (wit)

+ yo(—a)e w; [~ sin (wit)] + yoe “wi [~ cos (wit)]

+ <%) (—a)’e " sin (wit) + (%> (—a)e™"wy cos (wit)

w1 w1

+ (@> (—a)e”"wy cos (wit) + (?) e~ "wi[~sin (wit)]

1
or

d2
d_t;y = a’yoe~ ™ cos (wit) + wiayoe” * sin (wyt)

+ wiayoe” " sin (wit) — wiyoe * cos (wit)

+ a® (%) e " sin (wit) — aw; <%) e " cos (wit)

W1 w1
— aw; <%) e cos (wit) — wi <%) e sin (wit).
w1 w1
Now multiply dy/dt by 2a
2ad—z = —2a*yoe” " cos (wit) — 2aw yoe* sin (w;t)

—2a® (%) e~ sin (wit) + 2aw; <@) e~ cos (wit)

w1 w1



and multiply y by w} + a*:

(wi + a®)y(t) = wiyoe ™ cos (wit) + wi (%) e " sin (wit)
w1

+ a*yoe " cos (wit) + a® <%) e~ sin (wyt).
w1

To see that the eight terms in ‘;273 add to the four terms in (2a)dy/dt

and the four terms in (w?+a?)y to give zero, it helps to gather terms
like this:

yoe ™ cos (wit)[a® — w} — 24 + w? + a?

+ yoe ¥ sin (wit)[wia + wia — 2wy a]

+ 20 et oo (wit)[—wia — wia + 2wy a)
Wi

4 I mat iy (wit)[a* — w? —2a* + wi+a*] =0
w1

as expected. To verify that the initial conditions are satisfied, set ¢
to zero in the expressions for y(¢) and %:

y(0) = yoe” cos (0) + (0) = yo = ya

and
dy
dt|,_,

in accordance with the initial conditions.

= —ayo+ (0) 4+ (0) + ayo =0



Problem 6

Derive the expressions shown in Eqs. 4.88 to 4.91 for the partial-
fraction decomposition of Eq. 4.87 and write the constants B, C,
and D in terms of circuit parameters.



Hint 1: To find the expressions for A, B, C, and D, start with Eq.
4.87

Viws/L Vi [As+B  C(s+a)+D
(24 w)[(s+a)?+w) L [s24+w? (s+a)?+uw?

and multiply both sides by the denominator of the left side.



Hint 2: Multiplication leads to

As® + 2Aas® + Asa® + Aswi + Bs® 4+ 2Bas + Ba® + Bw}
+ Cs* 4+ Csw? + Cas® + Caw? + Ds* + Dw? = 1.

Now gather terms into power of s and enforce the equality for each
power of s.



Hint 3: Equating the coefficients for each power of s gives

(1) A+C=0

(2) 2Aa+B+Ca+D =0

(3) Aa® + Aw? +2Ba + Cw? =0
(4) Ba® 4+ Bwi + Caw? + Dw? =1

which can be solved for A, B, C, and D.



Hint 4: From the equation labeled (1) in the previous hint,
C=-A
and from (2),
D=-2Aa— B—Ca=-2A— B+ Aa=—Aa— B,
and from (3),

 —Ad® - Awf - Cw? —A(@® 4 wi) + Aw? A(w? — W)

B
2a 2a 2a

in which the relation a® +w? = w? has been used. Using this relation
makes (4) look like this:

B(a* + wi) + Caw? + Dw? = Bwg + Caw? + Dw? = 1.

Now use D = —Aa — B.



Hint 5: Plugging in the relations for B and C' shown in the previous
hint gives

Buw} + Caw? — Aaw? — Bw? =1
Aw? —wg) Alw? —w§) 5

2 2
wi — Aaw? — Aaw? — —2——2w =1
2a 0 s s 2a s ’

and this can be solved for A (you can see the details in the Full
Solution if you need help with this).



Hint 6: To write A, B, C, and D in terms of circuit parameters,

recall from Eq. 4.77 that a = % and from Eq. 4.78 that w? = %



Full Solution:

To find the expressions for A, B, C', and D, start with Eq. 4.87

Viws/L ~ Viws [As+B  C(s+a)+D
(2 +w)[(s+a)2+w? L |[s24+w? (s+a)?+w?

and multiply both sides by the denominator of the left side:

Viws _ Viws

= = H{(As + B)[(s + ) +wf] + [Cls +a) + DI(s” + )}

or
(As+ B)[(s +a)* + wi] + [C(s + a) + D](s* + w?) = 1
Performing the multiplications gives

As(s* + 2as + a® + wi) + B(s* + 2as + a® + wy)
+ Os(s* + w?) + Ca(s® + w?) + Ds* + Dw? =1

or

As® +2Aas® + Asa® + Aswi + Bs® 4+ 2Bas + Ba® + Bw}
+ Cs* + Csw? + Cas® + Caw? + Ds* + Dw? = 1



Gathering terms into power of s makes this

s*(A+C) + s*(2Aa+ B+ Ca+ D) + s(Aa* + Awi + 2Ba + Cw?)
+ (Ba® + Bwi + Caw? + Dw?) =1
and since this equality must hold for each power of s, this means
(1) A+C=0
(2) 2Aa+B+Ca+D =0
(3)  Ad®+ Aw} +2Ba+ Cwi =0
(4) Ba® 4+ Bwi + Caw? + Dw? =1
From (1),
C=-A
and from (2),
D=-2Aa—B—-Ca=-2A— B+ Aa=—Aa— B,
and from (3),
_ —Ad® — Aw} — Cw?  —A(a® +wi) + Aw?  A(w? — wj)

2a 2a 2a

in which the relation a*+w} = w2 has been used. Using this relation
makes (4) look like this:

B

B(a® + w}) + Caw? + Dw? = Bwj + Caw? + Dw? =1



and using D = —Aa — B makes this
Bwj + Caw? + Dw? = Bw§ + Caw? + (—Aa — B)w? = 1.
Plugging in the relations for B and C' shown above gives

Buw} + Caw? — Aaw? — Bw? =1

A(WE - Wg) 2 A(“? _WS) 2

wi — Aaw? — Aaw? — =202 =1,
2a 2a
This can be solved for A:
—A(wg ) (Wi — w?) — 24Aaw? =1
2a 0 s s
_—A(wg ) (w? — wp) — 24aw? =1
26L s 0 s
_—A(wz — ) —2Aaw? =1
2a s
Alw? — W2)? + 4Ad°w? = —2a
e —2a

(2 — wB)? + daPi?

in accordance with Eqs. 4.88 to 4.91 in the text.

To write A, B, C, and D in terms of circuit parameters, recall from
Eq. 4.77 that a = &+ and from Eq. 4.78 that w} = 75. These make



A look like this:
—2a B —R/L

(W —RP 48~ (2= e+ (B) w2

A=

as shown in Eq. 4.88 in the text. Making these substitutions in B,
C, and D gives

AR mud) (g
S T W N CILI¥:
C=—A= R/L
= = 3
(W2 — 75)2+ ()" w?
—2a? (w? —wd)
D=—-Aa—B= s D
a4 (w2 — wW2)? + 4a2w? + (W2 — wi)? + 4aw?
R?/217 w2 — %
__my L e

L

@2 - ol + () w?  (W2- o)+
1
R?217 + w2 — 75

(w2 — 22+ (B) w2




Problem 7

Find the s-domain function F'(s) and the time-domain function f(t)
for a series RLC circuit in which the voltage source is a battery with
constant emf V; and zero initial charge and current.



Hint 1: For a series RLC circuit driven by a constant emf V;, Eq.
4.67 becomes p g
q q q
E=VW=R—+L—+=
omha T rae T o
so start by taking the Laplace transform of both sides of this equa-

tion.



Hint 2: The term on the left side of the equation

d*q 1
LIVo] = RL LL —Llq].
vil = re | 8] + e [T + Heu
can be evaluated using the result of Section 2.1 for the Laplace trans-
form of a constant, and the first and second time-derivative property
can be applied to the first two terms on the right side.



Hint 3: Apply the initial conditions, which tell you that both ¢, and
% 1 are zero, to the equation

% = R[sQ(s) — qo] + L |’ Q(s) — sq0 — %

R

and solve for Q(s).



Hint 4: With constants a = 2+ and w2 = -%, the expression for Q(s)

2L LC»
becomes
Vo/L

(s2+2as+wi)
Now use partial fractions to put @(s) into a form with recognizable
inverse Laplace transform.

Q) = -



Hint 5: To use partial fractions in this case, start by writing

Vo/L %[ As+B  C

s(s242as+wi) L |s24+2as+wi s

and then multiply through by the denominator of the expression on
the left side of this equation.



Hint 6: Performing the multiplications and enforcing equality for
each power of s gives

1
C:w—g
—2
B:—QC’a——Za
wS
1

(see the Full Solution for this problem if you need help getting these
results).



Hint 7: Plugging the values of A, B, and C into the equation for
Q(s) gives

Qo) =L |+ =

VWl As+B C
L |s?+2as+wi s

and completing the square in the denominator of the term on the
right side of this equation leads to

Vo [ —5—2a 1}

Qs) = WAL [ (s +a)?+w? + s

in which the substitution w? = w2 — a? has been made.

To complete the process of converting this expression into a recogniz-
able Laplace transform, write the additive term 2a in the numerator
as a + a and then separate the fractions.



Hint 8: The first term inside the square brackets in the equation

W [=(sta)—a 1
Qs) = Wil [(s +a)2+w? s
2 [_ (s+a) B a 1

WL | (s+a)? +uw? (s+a)2+wf+s

is recognizable as the Laplace transform of a time-domain cosine
function with angular frequency w; shifted in frequency by a, and
the third term has the form of the Laplace transform of a constant
function.

That leaves the middle term, which can be put into the form of the
Laplace transform of a time-domain sine function (also shifted by a)
by multiplying this term by a factor of 2L.



Hint 9: With Q(s) in the form

O(s) = Vo [ (s+a)  a Wi 1
T WL (s+a)?+wl w(s+a)?+wl s’

the time-domain function ¢(t) can be found by taking the inverse

Laplace transform of Q(s) (details shown in Full Solution).



Full Solution:

For a series RLC circuit driven by a constant emf V,, Eq. 4.67
becomes p 24
q
E=Vy=rRY %2, 1
T T rae T C

and taking the Laplace transform of both sides of this equation gives

dq

dt dt? C

The term on the left side of this equation can be evaluated using the
result of Section 2.1 for the Laplace transform of a constant, and the
first and second time-derivative property can be applied to the first
two terms on the right side:

— RSQE) ]+ L [Q() 5

£Vl = RE{ ]+L£ {dzhlc[q}

dq Q(s)
ot 0] * C

in which Q(s) is the Laplace transform of the time-domain function

q(t).

Since the initial conditions tell you that both ¢y and % 1o Are Zero,
this is

% 1

?O = R[sQ(s)] + L[s*Q(s)] + QC(;,S) = Q(s) |:L82 + Rs + 5} )



Solving for Q(s) gives

Q(s) Yo Yo/ L
S) = =
s(Ls®+ Rs+ %) s(s®+ s+ )
With constants a = ﬁ and w2 = LC, the expression for Q(s) be-
comes
Vo/L
Q(s) = o/

s(s?+2as+wi)

Now use partial fractions to put Q(s) into a form with recognizable
inverse Laplace transform:

Vo/L W[ As+B C

= +
s(s24+2as+w?2) L [s2+2as+wi s

Multiplying through by the denominator of the expression on the
left side of this equation gives

% ?[(As 1 B)(s) + C(* + 2as + )|

or

1 = As®’+ Bs+Cs*+2Cas + Cw; = s*(A+C) + s(B+2Ca) + Cwy.



Since this equality must hold for each power of s, this means

(1) A+C=0
(2) B+2Ca=0
(3) Cw? =1

which can be solved for C, B, and A:

1
O:w—g
B=-2Ca= 2
ws
1
A:_c:_E

Plugging these values of A, B, and C' into the equation for Q(s)
shown above gives

VWl As+B +C
L |s?+2as+wi s




Completing the square in the denominator of the term on the right
side of this equation makes this

o=t [ L2 (2)

and pulling the common factor of ﬁ outside the square brackets
0

Q) = h e +1}

T WL |(staPtu? s

in which the substitution w? = wi — a?® has been made.

gives

The final steps in converting this expression into a recognizable
Laplace transform are to write the additive term 2a in the numerator
as a + a and then to separate the fractions:

@@*:Li[@fiﬁlZQ ﬂ
W [_( (s +a) a 1

WL s+a?+w? (sta?+w? s




The first term inside the square brackets in this equation is recog-
nizable as the Laplace transform of a time-domain cosine function
with angular frequency w, shifted in frequency by a, and the third
term has the form of the Laplace transform of a constant function.

That leaves the middle term, which can be put into the form of the
Laplace transform of a time-domain sine function (also shifted by a)
by multiplying this term by a factor of 2-. Doing that makes Q(s)
look like this:

Q(s) =

Vo [ (s+a)  a w1 1
WL | (s+a)?+w? wi(s+a)?+w? s

With Q(s) in this form, the time-domain function ¢(t) can be found
by taking the inverse Laplace transform of Q(s):

it = Q) = - {7 [t

< erara) L)

Taking the inverse Laplace transforms of these terms gives

%
q(t) = EOL {— cos (wt)e ™ — o% sin (wyt)e ™ + 1} .



Problem 8

Find the s-domain temperature function 7'(z, s) and the time-domain
temperature function 7(z,t) for the block of material shown below
if the ends at x = 0 and z = L are held at temperature 7 = 0 and

T

the initial temperature distribution is 7(x,0) = 7o sin (5¥).

Temperature Temperature
maintained at maintained at

7(0,t)=0 T(L,t)=0

Initial temperature distribution
1:(x,0)=‘cosin(7cx/L)

x=0 x=L/2 x=L X



Hint 1: The one-dimensional heat equation for this situation is given
by Eq. 4.109 in the text:

or(z,t) i@%(m,t)
ot pc, 0xr

To convert this partial differential equation into an ordinary differ-
ential equation, start by taking the Laplace transform of both sides.



Hint 2: For the equation

use the time-derivative property of the Laplace transform on the
time derivative on the left side and Eq. 4.21 on the second-order
spatial derivative on the right side.



Hint 3: To solve this equation

k d*T(z,s)
p—cpT — ST([E, S) = —T(Z', 0)
d*T(z,s)  pcy PCp
o L) = —T(0)
AT (z, s C 16 e v
S et = = zin ().

begin by writing the homogeneous equation.



Hint 4: The general solution to the homogeneous equation is

pCps

T(z,s) = ceV T e VIR




Hint 5: Now guess a particular solution to the full (non-homogeneous)
differential equation, such as:

T(z,s) = Asin (%) + B cos <7T—[i€)

in which the constants A and B can be determined by inserting this
expression for T'(z, s) into the differential equation.



Hint 6: Take the second derivative of the particular solution 7'(z, s)
with respect to z and insert the expressions for T'(x, s) and its second
derivative into the heat equation.



Hint 7: The equation that results from the previous hint must hold
for both the cosine and the sine functions, which means that the
cosine coefficient B must equal zero and the coefficient A is given by
2 pc 2 .
(£) +58s o5 (2) +s

(if you need help getting this result, see the Full Solution for this
problem).



Hint 8: Now add the solution of the homogeneous equation to the
particular solution:

pPCps T

T(x,s) = cieV T L VIR +sin (—),
+ s

u L

e, \L
and determine the constants ¢; and ¢y by applying the boundary
conditions. The initial-time conditions says that 7(0,¢) = 0, and
the spatial boundary condition at x = L says that 7(L,t) = 0, so
T(L,s)=0.



Hint 9: Applying the boundary conditions leads to ¢; = —cy = 0
(details can be found in the Full Solution). So

T(z,s) = % sin <7T—Lx>,
e (7)) +s

and the time-domain function 7(z,t) can be found by taking the
inverse Laplace transform of this expression.



Full Solution:

The one-dimensional heat equation for this situation is give by Eq.
4.109 in the text:

or(z,t)  wk 0°7(x,t)
ot pc, 0x2
This partial differential equation can be converted to an ordinary
differential equation by taking the Laplace transform of both sides:
r ot (z,t) _r ia%(x,t)
ot pc,  Ox?
and then using the time-derivative property of the Laplace transform
on the time derivative on the left side and Eq. 4.21 on the second-
order spatial derivative on the right side. That leads to the equation

k d*T(z,s)
ST(ZL’, 8) — 7'((E, 0) = p—cpw
or
k d*T(z,s)
p_cp i sT(x,s) = —7(x,0)
d*T(z,s)  pcy
) T _ _P%
L05) P (e ) = 2,0



To solve this equation, begin by writing the homogeneous equation

d*T(z,s)  pcy
T — 7ST(ZE, S) = 0

for which the general solution is

pPCps

T(x,s) = cieV ST 4 e VIR

The next step is to guess a particular solution to the full (non-
homogeneous) differential equation, such as:

T T
T(r.s) = dsin () + Beos ()
(x,s) sin { + B cos 7
in which the constants A and B can be determined by inserting
this expression for T'(x, s) into the differential equation. To do that,
you’ll need the second derivative of T'(x, s) with respect to x, so start
by taking the first derivative:

= A— cos

dx L

dT(z, s) T <7zv> T . (mc)’

and then take the second derivative with respect to x:

PT) (7Y (T2 - p (2 e ()



Now insert these expressions for T'(z,s) and its second derivative
into the heat equation, which gives

(Y ()5 ()
o (%) + oo (5)] = (7).

Since this equality must hold for both the cosine and the sine func-
tions, the cosine coefficient B must equal zero, and the coefficient A
can be found using

-A(z) s (77) - B2s [ ()] = ~Z2mon ()

or
™2  pc pc
A (_) p.| _ _ P
|: I + T0
Hence .
I B 70
s 2 C o K s 2 ’
(£) +22s a(z) +s

Now add the solution of the homogeneous equation to the particular
solution:

/555 /55 To /T

T(x,s):cle K J6—|—C2€ K x—|——281n (-),
£ (m) 4 L

P L



in which the constants ¢; and ¢, can be determined by applying the
boundary conditions. The initial-time conditions says that 7(0,t) =
0, so T(0,s) = 0, which means that

PCpS PCps 0
T(0,5) = creV = O eV O 4 7o sin (W( ))

K K 2
(1) +s L
= C1 + Cy = 0
S0 ¢ = —cy. The spatial boundary condition at x = L says that

T(L,t) =0, so T'(L,s) = 0, which means that

ps cps L
T(L, S) = c eV ) cie (L) + + sin (M>
+ s

(%) L
PCps _ pCps L 70 .

= eV s —e Ve 4 ——5——sin ()
o (£) +s

= cre /Pc:_s (L) B Clef pC:s (L) — |: /PCps PCpsL:| _ 0

which can only be true if ¢; = —c; = 0. Thus
T(z,s) = #sin <7T—;>,
e (£) +s

and the inverse Laplace transform gives

r(z,t) = LT (z,5)] = Toe_f’?p<%)2t sin (W—Lx>



Problem 9

Find the s-domain function Y (s) and the time-domain function y(t)
for the string wave discussed in Section 4.5 if the initial displacement
of the string at time (¢ = 0) is y(x,0) = yp sin (ax).



Hint 1: In Section 4.5 of the text, the one-dimensional wave equation
is given by Eq. 4.129 as:
02 f(x,t) B L O f(x,t)

oz ox?
and one approach to finding f(x,t) is to use the Laplace transform to
convert this partial differential equation into an ordinary differential
equation. To do that, start by taking the Laplace transform of both
sides.



Hint 2: To solve the equation
2 2
r [8 f(a:,t)} _r [028 f(m,t)}

ot? 0x?
use the second-order time-derivative property (Eq. 3.13) on the left
side of this equation and spatial-derivative relation of the Laplace
transform (Eq. 4.20) on the right side.



Hint 3: Using the properties described in the previous hint gives
y L, d?Y (z,5)

2
S Y(‘CI:? S) - Sy(mﬁo) - at t=0 = d.fljz 9

and the initial condition of zero initial velocity (stated in the text)
means that % = 0 at t = 0. Also note that the initial condition
given in the problem statement says that y(z,0) = yosin (az).



Hint 4: To solve the ordinary differential equation

d*Y 2
% — %Y(az, s) = —% sin (ax).

start by writing the homogeneous equation.



Hint 5: The constants ¢; and ¢, in the homogeneous equation
Y (z,5) = crev® + cpe” "

can be determined by applying the boundary conditions. One of
those conditions is that Y (z, s) must remain bounded as = — oc.



Hint 6: The next step is to guess a particular solution to the full
(non-homogeneous) differential equation. One such solution is

Y(z,s) = Ayosin (ax),

and the constant A can be found by substituting this expression for
Y (z,s) into the full differential equation.



Hint 7: Solving for the constant A gives

-5
e+ )

(see the Full Solution for this problem if you need help getting this
result). Now add the homogeneous solution to the particular solu-
tion.



Hint 8: The constant ¢y can be determined by setting x = 0 in the
expression for Y (z, s):
Y (x,5) = cpe” % + ;yo sin (ax)
| @+ 5)
and noting that the driving function at position = 0 is the time-
domain function g(t).



Hint 9: If the Laplace transform of g(¢) is the s-domain function
G(s), then
Llg(t)] = G(s) =Y (0,5)

so ¢g = G(s). This means that Y (z,s) is

s s

Y(z,s) = G(s)e v* + ———yp sin (ax

(7:8) = G o snsin o)
s

= G(S)G_%*T + Yo sin (al‘)m,

and taking the inverse Laplace transform of Y(x, s) gives y(z,t).



Full Solution:

In Section 4.5 of the text, the one-dimensional wave equation is given
by Eq. 4.129 as:
82f(x,t) 282f($7t)
=

o2 0x?
and one approach to finding f(x, ) is to use the Laplace transform to
convert this partial differential equation into an ordinary differential
equation. To do that, start by taking the Laplace transform of both

sides: ) )
[Pra0] _ a0 en]
ot? Ox?
Using the second-order time-derivative property (Eq. 3.13) on the
left side of this equation and spatial-derivative relation of the Laplace
transform (Eq. 4.20) on the right side gives
y d*Y (z, s)
2 2 ’

sY (z,s) — sy(x,0) — St =V g
The initial condition of zero initial velocity (stated in the text) means
that % = 0 at ¢t = 0, and the initial condition given in the problem
statement says that y(z,0) = yg sin (ax), so the ordinary differential
equation is

2
Ugd Y(ZB,S)'

2Y _ ; —
s°Y (z, s) — sy sin (ax) 72



or

d*Y (z, s)
dx?

To solve this equation, write the homogeneous equation

s SYo .
— FY(Z‘, s) = —~ 7 sin (azx).

Y (x,5) = crev® + cpe "

in which the constants ¢; and ¢, can be determined by applying the
boundary conditions. One of those conditions is that Y (x,s) must
remain bounded as  — oo, which means that ¢; must equal zero.

The next step is to guess a particular solution to the full (non-
homogeneous) differential equation. One such solution is

Y(x,s) = Aygsin (ax),

and the constant A can be found by substituting this expression for
Y (z,s) into the full differential equation. That requires the second
derivative of Y(x,s) with respect to z. The first derivative with
respect to x is

dY(x,s)
dx

and second x-derivative is

d*Y (z, s)
dr2

= Aayj cos (ax)

= —Aa®yq sin (az).



Inserting Y'(z, s) and its second x-derivative into the full differential
equation makes it look like this:

2 s? SYo
—Aa*ygsin (az) — ﬁAyo sin (ax) = — 2 sin (ax)
or )
s, ST\ s
Hence

B s
@)

With the constant A in hand, the next step is to add the homoge-

neous solution to the particular solution:

s s
Y(z,s) = coe” v* + —————~yp sin (ax)
| A D)
and the constant cy can be determined by setting x = 0 in the

expression for Y (z, s):

S

Y (0,5) = coe v 4 )yo sin (a(0)) = ¢

v? (a® + ;j—i
and noting that the driving function at position x = 0 is the time-

domain function g¢(t). If the Laplace transform of ¢(t) is the s-
domain function G(s), then

Llg(t)] = G(s) =Y(0,s)



so ¢a = G(s). This means that Y (z,s) is
s
= G(s)e™»® + yosin (ax)

Y(z,s) = G(s)e »% + Yo sin (ax)

s
(av)? + 82
Taking the inverse Laplace transform gives

y(z,t) = LY (z,8)] = L7 [G(s)e "] +L7 {yo sin (aw)32 +S(cw)2

or
y(x,t) =g (t - f) + yo sin (ax) cos (avt).
v



Problem 10

Find the time-domain voltage v(x, t) and current i(z, t) for the trans-
mission line discussed in Section 4.6 if the line has an initial voltage
v(x,0) = v; in which v; is a constant.



Hint 1: The partial differential equations for transmission-line volt-
age and current are give by Eqgs. 4.151 and 4.152 in Section 4.6:
ov(z,t)
Ox

di(z,t)  Ov(x,t)

or ot c.

= —i(z,t)R and

Start by taking the Laplace transforms of these equations.



Hint 2: In the equations

L {8“6(;;’ t)] — —RL[i(x,t)] and £ [(‘%(aa; t)} oY {8“(;’ t)} .

you can use Eqgs. 4.155 and 4.156 to write the derivatives as

dV(z,s)
dz

= —RI(z,s)

and
dl(z,s)

dx

Note also that the initial condition tells you that in this case v(z, 0) =
V;.

= —C|[sV(x,s) —v(z,0)].



Hint 3: Now take the derivative of the equation for dV (z, s)/dx with
respect to x.



Hint 4: To solve the differential equation
d*V (x, s)

dx?

— RCsV (z,s) = —RCv;,

start by writing the homogeneous equation.



Hint 5: The general solution of the homogeneous equation can be

written as
V([IZ’, 8) — Cle\/RCsa: + 6267\/1%0593

and the next step is to guess a particular solution for the full (non-
homogeneous) equation.



Hint 6: One particular solution is
V(z,s) = Avy;

and the constant A can be determined by inserting this into the
d?V (x,s)

equation for — 3



Hint 7: With the constant A given by

A:

1
S Y
the sum of the homogeneous and particular solutions look like this:

V(x,s) = cpeVFO 1 %



Hint 8: To determine the constant co, use the initial condition that

says
v

V(0,s) = L[v(0,t)] = ;0

and plug = = 0 into the equation for V(z, s):

V(0,5) = coeV OO 4 Yo+
$ $



Hint 9: Equating the expressions for V' (0,s) in the previous hint

gives
U; U
V(0,8)=cpt — = —
5 S

which means
Vo (% Vo — V4
= —— — = .
s s S




Hint 10: Inserting the expression for ¢, given in the previous hint

makes V' (z, s) look like this:

Vo — Vi JRcse Vi
V(x,s) = ———eVHCsm 1 =
S s

and the time-domain voltage v(z,t) is the inverse Laplace transform
of V(z,s).



Full Solution:

The partial differential equations for transmission-line voltage
and current are give by Eqgs. 4.151 and 4.152 in Section 4.6:

du(z,t) di(z,t)  Ov(z,t)
e i(z,t)R and i 5 C

and the Laplace transforms of these equations are

[P0 i) i [ 250] - e [20],

x ox ot
Now use Eqgs. 4.155 and 4.156 to write these derivatives as
av
% = —RI(x,s)
and
dl(z,s)

P —C[sV(x,8) —v(z,0)] = =CsV(x,s) + Cv

in which the initial condition v(x,0) = v; has been used.

Taking the derivative of the equation for dV (z, s)/dx with respect
to = gives
d*V (x,s) _ R [dl(m,s)

dz?

} = RCsV(x,s) — RCv;



or

d*V (x, s)
dzx?
To solve this differential equation, start by writing the homogeneous
equation

— RCsV(x,s) = —RCw;.

d*V (x, s)
dx?

for which the general solution can be written as

— RCsV(xz,s) =0

V(z,s) =ce ROsw 4 o e~ VHCsT

The next step is to guess a particular solution for the full (non-
homogeneous) equation. One such solution is

V(z,s) = Av;.

Inserting this into the equation for ‘FV—(;E’S)

o gives

0 — RCs(Av;) = —RCv;

or 1
A==
S

which makes the sum of the homogeneous and particular solutions
look like this: "
V(x,s) = cpeV O™ 4 2,
S



To determine the constant ¢y, use the initial condition that says
V(0,5) = L[o(0,8)] = =
and plug = = 0 into the equation for V(z, s):
V(0,s) = cpeVROS0) 4 % =co+ %

Equating the last two expressions for V (0, s) gives
(5 U

V(0,s)=cy+ — = —

s s

which means

02:———_
S S S

With this expression for ¢y, V(x, s) becomes

Vo (4 Vo — U;

Vo — Vi JRese . Vi
V(z,s) = ———LeViCor 4 2
s s
and the time-domain voltage v(z,t) is the inverse Laplace transform
of V(x,s):







Chapter 5

Ztransform Solutions



Problem 1

Find the Z-transform F(z) of the sequence shown below, then use
the right-shift version of the time-shift property of the Z-transform
to find F'(z) for this sequence shifted two samples to the right.

L S VIR W
o— 4
L o | ]




Hint 1: To find the Z-transform of the sequence shown in the graph,
start by reading off the value of each sample. Those values form the
sequence f(n), and the Z-transform F(z) can then be found using
Eq. 5.9:

F(z)=Z[f(n)] =>_ f(n)z""



Hint 2: Inserting the values of the sequence f(n) into Eq. 5.9 gives

2 4 o -1 -3 0
F)=2lfn)]=5+5+t 3+ 5+a+3

4 1 3
_l’_ J—



Hint 3: The right-shift version of the Z-transform time-shift property
is given by Eq. 5.47 as

Z[f(n—n)] = 27" Z[f(n)] = 27" F(2)

and the constant n; = 2 for the case of a shift of two samples to the
right (that is, toward later time).



Full Solution:

To find the Z-transform of the sequence shown in the graph, start
by reading off the value of each sample. Those values are

.f(n) = [274707 _17 _370]

and the Z-transform F'(z) can be found using Eq. 5.9:

F(z) = Z[f(n)] =>_ f(n)z"".

Inserting the values of the sequence f(n) into Eq. 5.9 gives

The right-shift version of the Z-transform time-shift property is given
by Eq. 5.47 as

Z[f(n—m)] =z Z[f(n)] = 27" F(2)

and the constant n; = 2 for the case of a shift of two samples to the



right (that is, toward later time). Hence
Z[f(n—2)] =2"2[f(n)] = 2" F(2)

=224 5 -5 -5 =St == .



Problem 2

Use the inverse Euler relation and the approach shown in Section
5.2 to verify Eq. 5.43 for F(z) for the discrete-time sine function

f(n) = sin (wn).



Hint 1: The Z-transform of the discrete-time sine function f(n) =
sin (wyn) is given by Eq. 5.43 as

zsin (wy)
22 —2zcos (wy) + 17

F(z) =

To derive this expression for F'(z), start by plugging f(n) into the
definition of the Z-transform:

F(z) = Z f(n)z™" = Zsin (win)z™".



Hint 2: Now use the inverse Euler relation for the sine function:
eiwln _ e—iw1n

sin (wyn) = 5
i



Hint 3: For the F(z) equation

n=0 n=0
_ 1 N [(ze”'wl)*n (ze"wl)*n]

21 —

1 « 1\ I/ 1Y\"
T2 o <ze‘iw1> 2 nZ:O (zewl) ’

use the power-series relation given by Eq. 5.27.



Hint 4. Applying the power-series relation to the expression given
in the previous hint gives

1 1 1 1
F)=— —— | — — [ ————
=3 (1——> 2 <1——)
1 ze~ w1 1 zet
© 20 \zem — 1 2i \ zer — 1
as long as |1/ze“'| < 1 and |1/z€™*| < 1, which means |z| > 1.

Now add the two exponential terms after finding their common de-
nominator.



Hint 5: Finding the common denominator and adding the two terms
gives

- L[ et g
2i | (ze7r — 1) (zetor — 1) (ze®r — 1) (ze~#1 — 1)

1 22 — zeTW1 — 22 4 peten 1 z (e — emir)

T2 le—ze—Wl — zeiw —i—l} 2i LQ—z(eiwl—i—e—iwl)—i—l}

Now use the inverse Euler relation to convert the exponential terms
in the numerator into 2isin (w;) and the exponential terms in the
denominator into 2 cos (wy).



Full Solution:

The Z-transform of the discrete-time sine function f(n) = sin (wyn)
is given by Eq. 5.43 as

zsin (wy)
22 —2zcos (wy) + 1’

F(z) =

To derive this expression for F(z), start by plugging f(n) into the
definition of the Z-transform:

o (0]
F(z) = Z f(n)z™" = Zsin (win)z™".
n=0 n=0
Now use the inverse Euler relation for the sine function:
eiwln - e—iw1n
sin (wn) = ——
(cn) i ’

which makes F'(z) look like this:

n=0 n=0
1 - —tw1\ w1 n
== ()™ = () "]
n=0




Now use the power-series relation given by Eq. 5.27 to make this

1 1 1 1
F<z):2_z’(1—;.> _2_z'<1—.;>
1 ze 1 1 zett
2\ zeiwr — 1 27 \ zewr — 1

as long as |1/ze”™1| < 1 and |1/2¢™!| < 1, which means |z| > 1.
These two exponential terms can be added after finding their
common denominator:

Py - [ o) et o ]
2i [ (ze7r — 1) (zetr — 1) (zetr — 1) (ze7™1 — 1)

L[z =22z 1 z (e — emir)

T2 { 22 — zemw1 — zeiwr ] ] T2 [22 — z (e 4 e7iwr) 4+ 1]

Finally, use the inverse Euler relation to convert the exponential
terms in the numerator into 2isin (w;) and the exponential terms in
the denominator into 2 cos (wy), giving

zsin (wy)

F =
(2) 22 — 2z cos (wy) + 1

in agreement with Eq. 5.43.



Problem 3

Use the Z-transform examples of Section 5.2 and the linearity prop-
erty discussed in Section 5.3 to find the Z-transform F(z) of the
sequence f(n) = 5(2") — 3e~*"+2cos (6n).



Hint 1: The linearity property of the Z-transform tells you that the
transform of the sum of two or more terms is the same as the sum
of the transforms of the individual terms and that multiplicative
constants pass through the transform operator.



Hint 2: The Z-transforms of each term in the expression

F(z) = Z[f(n)] = Z[5(2") — 3e™*" 4 2 cos (6n)]
= Z[5(2")] + Z[-3e™*"] + Z[2cos (6n)]
= 5Z[2"] — 3Z[e™*"] 4 2Z[cos (6n)].

can be found using the examples in Section 5.2 of the text.



Hint 3: The Z-transform of the first term of this expression can be
found with the help of Eq. 5.31:

Z[a") = =

zZ—a

with ¢ = 2 in this case.



Hint 4: Eq. 5.34 can be used to determine the Z-transform of the
second term in F'(z) shown above:

2l = —2

z—e @

with ¢ = 4 in this case.



Hint 5: Now use Eq. 5.40 to find the Z-transform of the third term
in F(z):
2% — zcos (wr)

Zlcos (win)] = 22 —2zcos (wy) + 1

with wy; = 6 rad/sec in this case.



Full Solution:

The linearity property of the Z-transform tells you that the transform
of the sum of two or more terms is the same as the sum of the
transforms of the individual terms and that multiplicative constants
pass through the transform operator. So

F(2) = Z[f(n)] = Z[5(2") — 3¢™*" 4 2cos (6n)]
= Z[5(2")] + Z[-3e~*"] + Z[2cos (6n)]
=5Z[2"] — 3Z[e”""] + 2Z]cos (6n)].

The Z-transform of the first term of this expression can be found
with the help of Eq. 5.31:

z

2l = zZ—a

with a = 2 in this case.
Eq. 5.34 can be used to determine the Z-transform of the second
term in F'(z) shown above:

z

Zle " =

z—e @

with ¢ = 4 in this case.



Finally, you can use Eq. 5.40 to find the Z-transform of the third
term in F(2):

2% — z cos (wy)

Z[cos (win)] = 22 —2zcos (wy) + 1

with w; = 6 rad/sec in this case.

Inserting these expressions makes F'(z) look like this:

z z 2% — zcos (6)

F(z) = — 2 .
(2) =5 s i 22 —2zcos (6) + 1




Problem 4

Use the definition of the unilateral Z-transform (Eq. 5.9) to find
F(z) for f(n) = é(n — k) and compare your result to the result of
using the shift property (Eq. 5.49).



Hint 1: Inserting the sequence f(n) = d(n — k) into the Z-transform
definition (Eq. 5.9) produces:

Fz) = Z[f(n)] = 3 fm)=" = 3 [6(n — k)]

Now consider the effect of the term d(n — k) on the summation.



Hint 2: Since this term has non-zero value only when its argument
n — k is zero; that is, when n = k. And when n = k, then §(n — k)
has value of unity. That means that the product [6(n — k)]z™" is
non-zero only when n = k.



Hint 3: Using only the n = k term of the summation means that



Hint 4: To use the Z-transform shift property, note that Eqs. 5.47
and 5.49 say that

Z[f(n—n)] = 27" Z[f(n)] = 27" F(2)

in which F(z) is the Z-transform of the unshifted sequence f(n).



Hint 5: In this case, the unshifted sequence is f(n) = §(n), which
has Z-transform F(z) = 1.



Hint 6: Applying the shift property gives

Z[f(n— k)] = 2 *F(2).



Full Solution:

Inserting the sequence f(n) = d(n — k) into the Z-transform defini-
tion (Eq. 5.9) produces:

F(z) = Z[f(n)] =) _ fn)z"" = [8(n— k)"

Now consider the effect of the term d(n—k) on the summation. Since
this term has non-zero value only when its argument n — k is zero;
that is, when n = k. And when n = k, then d(n — k) has value of
unity. That means that the product [§(n — k)]z~™ is non-zero only
when n = k, in which case

o0

F(z)= Z[é(n — k) =k

n=0



Alternatively, the Z-transform shift property (Eq. 5.47 or 5.49) says
Z[f(n—m)] =z Z[f(n)] = 27" F(2)
in which F'(z) is the Z-transform of the unshifted sequence f(n).

In this case, the unshifted sequence is f(n) = d(n), which has Z-
transform F'(z) = 1. So applying the shift property gives

Z[f(n—k)]=2"F(z) =27%1)=27F

in accordance with the result obtained directly from the definition
of the Z-transform.



Problem 5

Use the approach shown in the “Time-shifting” subsection of Sec-
tion 5.3 to confirm the left-shift relation (Eq. 5.50), then apply that
relation to the sequence of Problem 1 shifted two samples to the left.



Hint 1: The Z-transform of the left-shifted sequence f(n + ny) is
given by Eq. 5.50 as

ni—1

Z[f(n+ny)]=2"F(2) - Z Flk)zm*

k=0

in which n; is again a positive integer.



Hint 2: To understand where this relation comes from, start with
the definition of the Z-transform of the function f(n + n;):

and let k =n+nq, son =k —n;.



Hint 3: In the expression

Z[f(n+mn1)] Z fk)z~kmm) = (Z f(k:)z_k> Z™

k=n1 k=n1

the term in parentheses would be the Z-transform of the sequence
f(k) if the summation began at k = 0 rather than & = n;. So this
term can be written as the Z-transform F'(z) if the contributions of
the terms with indices between between £ = 0 and &k = ny — 1 are
then subtracted off.



Hint 4: Since & = 0 corresponds to n = —n; and k = ny — 1
corresponds to n = —1, these are the n; samples to the left of n =0
in the f(n) sequence. Thus

Z[f(n+n)] = (F(Z) - Z_: f(k)zk> 2



Hint 5: For the sequence f(n) =[2,4,0,—1,—3,0], the Z-transform
F(z) is given in Problem 1 as

4
F2) =24 - — = — 2.
(2) =2+~



Hint 6: Apply the left-shift relation with n; = 2 to the expression
for F'(z) given in the previous hint.



Full Solution:

The Z-transform of the left-shifted sequence f(n + ny) is given by
Eq. 5.50 as

Z[f(n+n)] =2"F(z) — Z F(k)zm*

in which n; is again a positive integer and the terms in the sum-
mation are subtracted to remove the contributions of samples which
have been left-shifted past n = 0.

To understand where this relation comes from, start with the defi-
nition of the Z-transform of the function f(n + ny):

Z[f(n+ny)] an—i—nl -

and let kK = n 4+ ny, son = k —ny. That means

Z[f(n+ny)] Z f(k)z= k=) — (i f(k:)z_k> z

k=n1 k=n1

In this expression, the term in parentheses would be the Z-transform
of the sequence f(k) if the summation began at & = 0 rather than



k = ny. So this term can be written as the Z-transform F'(z) if the
contributions of the terms with indices between between k = 0 and
k = n; — 1 are then subtracted off. Since k& = 0 corresponds to
n = —ny; and k = n; — 1 corresponds to n = —1, these are the n;
samples to the left of n = 0 in the f(n) sequence. Thus

Z[f(n+m)] = (F(z) = f(k)z"“>

k=0

in accordance with Eq. 5.50.



For the sequence f(n) = [2,4,0,—1,—3,0], the Z-transform F(z) is
given in Problem 1 as

4
Flz)=2+4-————
(z) =2+~

so the left-shift relation with n; = 2 gives

ny—1

Z[f(n+m)] = 2"F(z) = Y flk)zmF

k=0
9 1 3 e 92—k
=z 2+——;—; —Zf(k;)z
k=0
=227 + 4z — o3 f(0)22 — f(1)2*
z 22
1
:2z2+4z———%—2z2—421
z oz



Problem 6

Use the inverse Euler relation for the cosine function and the multiply-
by-an-exponential property along with the Z-transform of the unit-
step function u(n) to find F(z) for f(n) = A" cos (win)u(n).



Hint 1: The Z-transform of the sequence f(n) = A" cos (win)u(n)
can be found using the inverse Euler relation for the cosine function:

2ly0) = 2 [ar (L

_ %Z[A”ei‘”l”u(n)] + %Z[A”e‘i“’lnu(n)].



Hint 2: Note that the Z-transform of the unit-step function u(n) is




Hint 3: Note also that the Z-transform of a function f(n) multiplied
by the exponential 27 is

2ltfwl=F (),

in which F'(z) is the Z-transform of f(n).



Hint 4: Let z; = Ae™' and f(n) = u(n) so that

ZlAremu(n) = F () = !

and then let 2, = Ae™™' and f(n) = u(n).



Hint 5: Hence

2 (T ) ) -

1 1
1 . Aeiwl _I_ 1 . Ae—iwl

z

1
2
1 z N Z

2 |z — Aeiwr | 5 — Ae—iwr |

Now find the common denominator of these two terms.



Hint 6: Finding the common denominator makes this

[ (=)

[ 2(z — Ae~™1) z(z — Ae™r)
| (z — Aetr)(z — Ae7™1) (2 — Ae1)(z — Ae—1)
[22 — 2Ae™ ™1 + 22 — 2 Ae™n
(z — Aetwr)(z — Ae—iwr) }
222 — z(Ae™r 4 Ae~r)
| 22 — z(Aeir 4 Ae—iwr) 4 AQ}

N~ NI~ N~

Now use the Euler cosine relation in both the numerator and the
denominator.



Full Solution:

The Z-transform of the sequence f(n) = A™cos(win)u(n) can be
found using the inverse Euler relation for the cosine function:

2ly) = 2 |ar (i
[Am ey ()] + %Z[A"ewu(n)]

1
=-Z
2

and noting that the Z-transform of the unit-step function u(n) is

Note also that the Z-transform of a function f(n) multiplied by the

2lrwl=r (),

exponential 27 is

in which F(z) is the Z-transform of f(n). So if z; = Ae™! and

f(n) = u(n), then
1

Aeiwl °

Z[A"e iy (n)] = F ( A;M) =-



Likewise, if z; = Ae™™* and f(n) = u(n), then

Z[A"e 1y (n)] = F (Ae:‘ﬂ) = ﬁ.

Hence

" eiwln + e—iwln - 1
Z {A (—2 )u(n)} =3

B 1 z + z
2|z — Aeiwr |z — Ae—iwn

1 1
1— Aetw1 + 1— Ae~ w1

z

and finding the common denominator makes this

2 () o)
1] 2(z — Ae~™1) 2(z — Ae™r)
T2 (2= Ae)(z — Aeien) T (2 — Aein)(z - Ae—m}
1 [2% — zAe™™1 + 22 — zAe
T2 (z — Aetwr)(z — Ae—iwr) }
1 [ 222 — z2(Ae™ + Ae™1)
T2 | 22 — z(Aeir 4 Aeiwr) 4 A2}




Using the Euler cosine relation in both the numerator and the de-
nominator gives

win —win 2 _
z {A” (e +e >u(n)] _ % { 22% — 2z A cos (w1)

2 22 —2zAcos (wy) + A?
22— zAcos (wr)
© 22— 2zAcos (wy) + A2




Problem 7

Find the unilateral Z-transform F'(z) for the sequence f(n) = 2"u(n)+
(—3)™u(n) and make a z-plane plot showing the poles, zeros, and re-
gion of convergence.



Hint 1: The linearity of the Z-transform means that the Z-transform
of the sequence f(n) = 2"u(n) + (—3)"u(n) can be written as

F(z) = Z[2"u(n) + (=3)"u(n)] = Z[2"u(n)] + Z[(=3)"u(n)]

and both of the terms in this equation can be analyzed using the
Z-transform of the unit-step function u(n).



Hint 2: The Z-transform of the unit-step function u(n) is

Also helpful for both terms in F(z) is the Z-transform property that
says that Z-transform of a function f(n) multiplied by the exponen-

tial 27 is
2lpsm) = (2).

in which F'(z) is the Z-transform of f(n).



Hint 3: Use the property shown in the previous hint on the first term
in F(z) with z; = 2 and on the second term of F(z) with z; = —3.



Hint 4: The two terms in the expression

F(z) = Z[2"u(n) + (=3)"u(n)] = i 3 1i

w |

: +
z—2 z+3

can be added by putting them over a common denominator.



Hint 5: With F(z) in the form

) = 2(z + 3) z2(z —2)
P& = oot Y o6+
22 +32+422 -2z 222 4 2 2(22+1)

(z—=2)(z+3)  (z—2)(z+3) (2 —2)(z +3)

The zeros can be readily determined by finding the values of z at
which the numerator is zero, and the poles can be determined by
finding the values of z at which the denominator is zero. You can
see the pole-zero diagram and the region of convergence for this case
in the Full Solution to this problem.



Full Solution:
The linearity of the Z-transform means that the Z-transform of the
sequence f(n) = 2"u(n) + (—3)"u(n) can be written as

F(z) = Z2[2"u(n) + (=3)"u(n)] = Z[2"u(n)] + Z[(=3)"u(n)]

and both of the terms in this equation can be analyzed using the
Z-transform of the unit-step function u(n):

Also helpful for both terms in F'(z) is the Z-transform property that
says that Z-transform of a function f(n) multiplied by the exponen-
tial 27 is
" z
2Lt fwl=F (),
21

in which F(z) is the Z-transform of f(n). So for the first term in
F(z) with z; =2




Hence

z—2+z—|—3‘

Putting these two terms over a common denominator leads to

o 2(2+3) 2(z — 2)
PO = s " ook 19
24324+ -22 2224z o 2(2241)

(z—2)(z+3)  (2-2)(z+3)  (2—-2)(z+3)



With F(z) in this form, the zeros can be readily determined to exist
at z =0 and z = —1/2, since the numerator is zero at those values
of z. The poles exist at z = 2 and z = —3, since the denominator
is zero at those values of z. Hence the pole-zero diagram looks like
this:

Zeroatz=0

Zeroatz=-1/2
Unit Circle

NN/

Poleat z=+2

and the region of convergence extends outward from the outermost
pole, which is the region |z| > 3.



Problem 8

Use the Z-transform derivative property to find F'(z) for
a) f(n)=nforn>0 b) f(n) =n? for n > 0.



Hint 1: The Z-transform z-derivative property can be written as

dF(2)
dz

Z[nf(n)] = —=

in which F(z) is the Z-transform of the sequence f(n).



Hint 2: To use this property to find the Z-transform of the sequence
f(n) = n, first consider the sequence f(n) = 1, for which the Z-
transform is F'(z) = -%;. Substitute f(n) = 1 and F(z) = %5 into
the z-derivative property shown in the previous hint.




Hint 3: The derivative in the expression

d (==
Zn(1)] = Z[n] = -2 (jzl)
d(zil) 1 p
dz z—1 - (Z _ 1)2
1(2_ 1) z -1




Hint 4: To use this property to find the Z-transform of the sequence
f(n) = n?, consider the sequence f(n) = n, for which you've just
determined the Z-transform to be F(z) = —nz- Substitute f (n) =
n and F(z) = =7 into the z-derivative property.



Hint 5: The derivative in the equation

Z(n(n) =
d |:(z—z1)2} _ 1 2z
dz (z—1)2 (2—1)3
1(z—1) 22 z—1-2z2 —z2-1
(=18 (-1 (=13 (21



Full Solution:

The Z-transform z-derivative property can be written as

dF(2)
z - 2
()] = 2%
in which F(z) is the Z-transform of the sequence f(n). To use this
property to find the Z-transform of the sequence f(n) = n, first
consider the sequence f(n) = 1, for which the Z-transform is F'(z) =
—*7. Substituting f(n) = 1 and F(z) = % into the z-derivative
property gives

dz
Since the derivative in this expression is
d (zil) _ 1 Z
dz  z—1 (z—1)2
1(z—1) 2 -1

(z=12 (=12 (2—1%




To use this property to find the Z-transform of the sequence f(n) =
n?, consider the sequence f(n) = n, for which you’ve just determined
the Z-transform to be F(z) = Zz. Substituting f(n) = n and

F(z) = ﬁ into the z-derivative property gives

In this case, the derivative is

d |:(z—zl)2:| 1 2z

dz (z—1)2 (2—1)3
1(z—1) 22 z—-1-22 —z-1

T o1 (1P (1P (-

which means that in this case the z-derivative property gives

Z[TL2]:—Z|:_Z_1:| _2(z41)

GC_17]  (-13



Problem 9

Show that the convolution property of the Z-transform works for the
sequences

a) f(n) =[-1,0,4,2] for n =0 to 3 and g(n) = [3,—1,1,5,—2]
for n = 0 to 4; both sequences are zero elsewhere.

b) f(n) =n and g(n) = ¢, in which ¢ is a constant and n > 0.



Hint la: For the sequences f(n) = [—1,0,4,2] and the sequence
g(n) =[3,—1,1,5, 2], to show that the convolution property of the
Z-transform works, start by writing the convolution property as

Z[f(n) xg(n)] = F(2)G(2)

in which * represents convolution and F(z) and G(z) are the Z-
transforms of f(n) and g(n), respectively.



Hint 2a: Now write the convolution as

o0

f(n)* g(n) =Y fk)g(n — k).

k=0



Hint 3a: The non-zero values of the product f(k)g(n — k) occur
for values of n and k between 0 and 7. To find the value of the
convolution for each value of n, allow £k to run from 0 to 7 (in this
case, since f(n) and g(n) are zero for n < 0, you only need to allow
k to run from 0 to n, but you can see why that’s true by writing the
product for all values of k£ between 0 and 7). For example, for n =0
with £k = 0 to k = 7, the sum of the convolution products looks like
this:

f(R)gn — k) = f(0)g(0) + fF(1)g(=1) + f(2)9(=2) + f(3)9(-3)
+f(4)g(=4) + F)g(=5) + f(6)g(=6) + f(T)g(=T7),

and the next step is to insert the values of f(n) and g(n) into this
expression. Then do the same for each value of n between 0 and 7.



Hint 4a: The Z-transform of the sequence

o0

fn)xg(n) =>" f(k)g(n — k) = [-3,1,11,-3,4,22,2, —4],
Z[f(n) * g(n)] =Y _[f(n) * g(n)]=""

-3 1 1 -3 4 22 2 -4
1 11 3 4 22 2 4

- 344 Z
+z+22 z3+z4+z5+26 27



Hint 5a: To verify the convolution theorem, compare this the result
from the previous hint to the product F'(z)G(z) of the Z-transforms
of f(n) =[-1,0,4,2] and ¢g(n) = [3,—1,1,5, —2].



Hint 6a: The transforms of f(n) and g(n) are

1 1 ) 2

228 A

and multiplying each term of F'(z) by each term of G(z) gives the
product F(2)G(z).



Hint 1b: For the sequences f(n) = n and g(n) = ¢, in which ¢ is a
constant and n > 0, the convolution of f(n) and g(n) is

n

f(n)xg(n) =Y fk)gln—k) =) (n)(c)=c) (n).

k=0



Hint 2b: The sum in the previous relation can be evalulated using

the relation .

n(n+1)
S = 2D,

k=0



Hint 3b: The Z-transform of the sequence

—CZ (n* +n)

is



Hint 4b: Use the results the Z-transforms of the sequences f(n) = n?

and f(n) = n given in Problem 5.8 to find the Z-transform of the
convolution of f(n) and g(n).



Hint 5b: The Z-transform of the convolution of f(n) and g(n) is

c 22+z c z

21/ n) » 9] = 5=+ 5 o1

and these terms can be added these terms by finding their common
denominator.



Hint 6b: As in Part (a) of this problem, the convolution theorem
can be verified by comparing the convolution result to the product
F(2)G(z) of the Z-transforms of f(n) and g(n).



Hint 7b: The transforms of f(n) and g(n) are

20 22 28
4 2
I—l—l—;‘i‘;
and
- ., 3 -1 1 5 =2
G(z) = Zlg(n)] = > _g(n)> ot atEt st 7

1 1 5 2
223 A

from which the product F'(2)G(z) may be determined.



Full Solution:
Part a:

For the sequences f(n) =[—1,0,4,2] and g(n) = [3,—1,1,5, —2], to
show that the convolution property of the Z-transform works, start
by writing the convolution property as

Z[f(n) x g(n)] = F(2)G(2)

in which * represents convolution and F(z) and G(z) are the Z-
transforms of f(n) and g(n), respectively. Now write the convolution
as

f(n)xg(n) = f(k)g(n—k)

k=0

The non-zero values of the product f(k)g(n—k) occur for values of n
and k between 0 and 7. To find the value of the convolution for each
value of n, allow k to run from 0 to 7 (in this case, since f(n) and
g(n) are zero for n < 0, you only need to allow k to run from 0 to n,
but all values of k between 0 and 7 are shown for completeness). For
example, for n = 0 with £ = 0 to kK = 7, the sum of the convolution



products looks like this:

f(k)g(n —k) = £(0)g(0) + f(D)g(=1) + f(2)g9(=2) + f(3)9(=3)
+ f(4)g(=4) + f(5)g(=5) + f(6)g(=6) + f(T)g(=T7)

and inserting the values from the f(n) and g(n) sequences gives

f(R)g(n = k) = (=1)(3) + (0)(0) + (4)(0) + (2)(0)
+(0)(0) + (0)(0) + (0)(0) + (0)(0) = =3.

Nowset n=1withk=0tok=T7:

f(R)gn = k) = f(0)g(1) + F(1)g(0) + f(2)g(=1) + F(3)9(-2)
+f(4)g(=3) + f(5)g(—4) + f(6)g(=5) + f(7)g(-6).

Inserting the values from the f(n) and g(n) sequences gives

fR)g(n = k) = (=1)(=1) + (0)(3) + (4)(0) + (2)(
+(0)(0) + (0)(0) + (0)(0

Forn=2withk=0tok=T:

f(R)gn = k) = f(0)g(2) + F(1)g(1) + £(2)9(0) + f(3)g(=1)
+f(4)g(=2) + f(5)g(=3) + [(6)g(—4) + f(T)g(=5).



Inserting the values from the f(n) and g(n) sequences gives

fR)gn = k) = (=1)(1) + (0)(=1) + (4)(3) + (2)(0)
+(0)(0) + (0)(0) + (0)(0) + (0)(0) = 11.

Forn=3withk=0tok=T:

fR)g(n = k) = f(0)g(3) + F(1)g(2) + f(2)9(1) + f(3)9(0)
+/(@)g(=1) + F(5)g(=2) + [(6)g(=3) + [(T)g(—4).

Inserting the values from the f(n) and g(n) sequences gives

fR)g(n = k) = (=1)(5) + (0)(1) + (4)(=1) + (2)(3)
+(0)(0) + (0)(0) + (0)(0) + (0)(0) = =3

Forn=4withk=0tok=T:

f(R)g(n — k) = f(0)g(4) + f(1)g(3) + f(2)9(2) + F(3)g(1)
+/(4)g(0) + FB)g(=1) + f(6)g(=2) + f(7)g(=3).

Inserting the values from the f(n) and g(n) sequences gives

f(R)gn = k) = (=1)(=2) +



Forn=5withk=0tok="T:

f(/f)g(n—/f)zf( )9(5) + F(1)g(4) + F(2)9(3) + f(3)9(2)
+ F(4)g(1) + £(5)9(0) + f(6)g(=1) + f(7)g(=2).

Inserting the values from the f(n) and g(n) sequences gives

f(k)g(n — k) = (=1)(0) + (0)(=2) + (4)(5) + (2)(1)
+(0)(=1) + (0)(3) + (0)(0) + (0)(0) = 22.

Forn=6withk=0tok=T:

f(R)g(n — k) = f(0)g(6) + F(1)g(5) + f(2)9(4) + f(3)9(3)
+f(4)g(2) + f(5)9(1) + £(6)g(0) + f(T)g(=1).

Inserting the values from the f(n) and g(n) sequences gives

f(k)g(n — k) = (=1)(0) + (0)(0) + (4)(=2) + (2)
1) )



Inserting the values from the f(n) and g(n) sequences gives
f(k)g(n — k) = (=1)(0) + (0)(0) + (4)(0) + (2)(—2)
+(0)(5) + (0)(1) + (0)(=1) + (0)(3) = —4.

Hence the convolution of f(n) and g(n) gives the sequence
f(n)x g(n) = _ [(k)g(n — k) = [-3,1,11,-3,4,22,2, -4,
k=0

and the Z-transform of this sequence is

Zz 22 23 AT 5 6 T
To verify the convolution theorem, compare this to the result of the
product F(z)G(z) of the Z-transforms of f(n) = [—1,0,4,2] and
g(n) =[3,—1,1,5,—2]. Those transforms are

F(z)=Z2[f(n)] =) f)e"=—F+5+5+5

4 2
Sl at s



03 -1 1 5 -2
G(z):Z[g(n)]:Zg(n)z _E+?+_2+§+?
n=0
1 1 5 2

or
1 11 3 4 22 2 4
F(Z)G(Z)——3—}—;4—;—;4-;4—;4';—?
in accordance with the result shown above for the Z-transform of the
convolution of f(n) and g(n).



Part b:

For the sequences f(n) = n and g(n) = ¢, in which ¢ is a constant
and n > 0, the convolution of f(n) and g(n) is

=" fBygn—k) = > (m)(c) =Y _(n)

Using the relation

makes this
=c Z (n*+n)

and the Z-transform of this sequence is

Z[f(n) * g(n)] = = Z[n?] + = Zn].

2 2
Using the results the Z-transforms of the sequences f(n) = n? and
f(n) = n given in Problem 5.8, the Z-transform of the convolution

of f(n) and g(n) is

c 224z c z

2y x gl =5 Y 5oy



and adding these terms over a common denominator makes this

cl 2242 L7 e[ 24z 2(2-1)
2(z—13 (=12 2|(z—13 (2—1)3
cl[2+z+22—=z 22

= =c——.

2 (z—1)3 (z—1)3

As in Part (a) of this problem, the convolution theorem can be ver-

ified by comparing this to the result of the product F(2)G(z) of the
Z-transforms of f(n) and g(n). Those transforms are

Z[f(n) x g(n)] =

F(z) = Z[f(n)] = Z(mz_n E —21)2
and 00
G(2) = Zlgn)] = 3 ()2 = e

and the product of these two sequences is

F(2)G(z) = [(2_21)2] {Cz - 1}

22

EESE

in accordance with the result shown above for the Z-transform of the
convolution of f(n) and g(n).

= C



Problem 10

Use the Z-transform inital- and final-value theorems to

a) Verify the initial-value theorem for the exponential function
f(n) = —e™?" and for the sinusoidals f(n) = 2cos(3n) and

f(n) =sin(n).

b) Verify the final-value theorem for the function f(n) = 5e=3".



Hint 1la: The Z-transform initial-value theorem says

F(0) = lim F(2),

Z—00

and the sequence f(n) = —e~?" has initial value

f(0) = -2 = 1.



Hint 2a: The Z-transform for f(n) = —e™2" is

F(z)=Z[f()] =) fn)z" ==Y ()"

and Eq. 5.34 tells you that

z

F(z)= Zle ] =

z—e @



Hint 3a: Using a = 2 in the relation given in the previous hint gives

—on z 1
F(z) = Z[—e 2]:—2_6_2:—1_£.

Evaluate this as z approaches infinity and compare the result to

£(0).



Hint 4a: For the sequence f(n) = 2cos (3n), the initial value is

f(0) =2cos (0) = 2.



Hint 5a: The Z-transform for f(n) = 2cos (3n) is

F() = ZIf00)] = 32 )" =2 ) Jfeos (0]

and Eq. 5.40 says

2% — zcos (wy)
22 —2zcos (wy) + 1




Hint 6a: Using w; = 3 in the relation shown in the previous hint
gives

2?2 — zcos (3)
22 —2zcos(3) +1
1 _ Cos (3)

1— 2coz(3) _|_ZL2

F(z) = Z[2cos (3n)] =2

Evaluate this as z approaches infinity and compare the result to

£(0).



Hint 7a: For the sequence f(n) = sin (n), the initial value is

f(0) =sin (0) = 0.



Hint 8a: The Z-transform for f(n) = sin (n) is

F(z) = Z[f(n)] =) f(n)z"" = [sin(n)]z""

and Eq. 5.43 gives the Z-transform for a sine function as

zsin (wy)

F(2) = Zlsin (win)] = 22 —2zcos (wy) + 1




Hint 9a: Using w; = 1 in the relation shown in the previous hint
gives

zsin (1)
22 —2zcos (1) +1
sin (1)

- 1_2co§(1)+ 1°

22

F(z) = Z[sin(n)] =

Evaluate this as z approaches infinity and compare the result to

£(0).



Hint 1b: The final-value theorem for the Z-transform is

lim f(n) =lim(z — 1)F(2).

n—00 z—1



Hint 2b: The sequence f(n) = 5e~*" has final value

f(o0) = 5e~3() = .



Hint 3b: The Z-transform for f(n) =

F(z) = Z[f(n)] =) f(n)z"

and Eq. 5.34 tells you that

F(z) = Zle ] =




Hint 4b: With a = 3, the relation shown in the previous hint gives

z

F(z) = Z[5e%"] =5

z—e 3



Hint 5b: Multiplying the expression for F(z) given in the previous
hint gives
z 2¢—z

(z—1)F(z) =5(z—1) =5

2z —e 3 z—e 3

Evaluate this as z approaches unity and compare the result to f(oco).



Full Solution:
Part a:

The Z-transform initial-value theorem says

F(0) = lim F(2),

Z—00

and the sequence f(n) = —e~?" has initial value

f(0) = -2 = 1.

The Z-transform for f(n) = —e™" is
F(z)=Z[f(n)] =) fn)z" == (e™)z"
n=0 n=0
and Eq. 5.34 tells you that
z
F — Zle—an] —
() = 2l = ——
In this case, that means
z 1




As z approaches infinity, this is

Z—00 Z—00

1 1
lim F(z) = lim [— 62] = — =-1

z

which matches the value shown above for f(0).

For the sequence f(n) = 2cos (3n), the initial value is
f(0) =2cos (0) = 2.
The Z-transform for f(n) = 2cos (3n) is

F(z)=Z[f(n)] =>_ f(n) Z cos (3n)]

and Eq. 5.40 says

2% — 2 cos (wy)
22 —2zcos (wy) + 1

F(z) = Z]cos (win)] =

In this case, that means

2% — zcos (3)
22 —2zcos(3) +1

1 _ cos (3)

=2 z
1— 2cozs(3) + ZLz

F(z) = Z[2cos (3n)] =2




As z approaches infinity, this is

_ cos(3) 1-0

B FE =l T ew 1 =00

in accordance with the value shown above for f(0).
For the sequence f(n) = sin (n), the initial value is

f(0) =sin (0) = 0.

The Z-transform for f(n) = sin (n) is

F) = Z(f0)] = 3 fm)e" = 3 fsin ()"

and Eq. 5.43 gives the Z-transform for a sine function as

zsin (wy)

F(z) = Zlsin (wim)] = 22 —2zcos (wy) + 1

In this case, that means

zsin (1)
22 —2zcos (1) +1
sin (1)

1— 2cos (1) _’_i

z 22

F(z) = Z[sin(n)] =




As z approaches infinity, this is

sin (1) 0
B e = e s T 1050 -

in accordance with the value shown above for f(0).



Part b:

The final-value theorem for the Z-transform is

lim f(n) = lim(z — 1)F(2).

n—00 z—1

and the sequence f(n) = 53" has final value
f(00) = 5e 3 = .

The Z-transform for f(n) = 5e7" is

F(z) = Z[f(n)] =) f(n)z"" =5 (e*")z"
n=0 n=0
and Eq. 5.34 tells you that
z
F(z)=Z[e ™ =
() = Zle™) = ——
In this case, that means
z
F(2) = Z[5e "] =5
() = Z[e™"] = 5——;
SO )
(- 1)F(z)=5(z-1)—— =5~



As z approaches unity, this is

2
=0

lim F(z) = 5-——

which matches the value shown above for f(o0).



